Methanemissionen aus Deponien Bewertung von Messdaten (METHMES)

durchgeführt im Auftrag des Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft

> Johann Fellner Petra Schöngrundner Paul H. Brunner

Wien, im November 2003

Projektleitung Johann Fellner

Projektbearbeitung Johann Fellner Petra Schöngrundner Paul H. Brunner

Grafische Gestaltung und Layout Inge Hengl

Impressum Technische Universität Wien Institut für Wassergüte und Abfallwirtschaft Abteilung Abfallwirtschaft und Stoffhaushalt A-1040 Wien, Karlsplatz 13/226.4 Tel.: +43 1 58 801 226 41 (Sekr.) Fax.: +43 1 504 22 34 E-Mail: aws@iwa.tuwien.ac.at URL: http://www.iwa.tuwien.ac.at

KURZFASSUNG

Die Verordnung zum Europäischen Schadstoffemissionsregister (EPER-V) verpflichtet die Deponiebetreiber zur Bekanntgabe der jährlich emittierten Methanmengen. Für die Erhebung dieser Daten stehen grundsätzlich zwei unterschiedliche Methoden zur Verfügung: Die Methanemissionen können gemessen oder mithilfe von Gasbildungsmodellen berechnet werden.

Im Rahmen der vorliegenden Studie wurde untersucht inwieweit die Ergebnisse beider Methoden übereinstimmen. Dazu wurden in der Literatur dokumentierte Methanmessungen auf Deponien mit Berechnungen mittels Gasbildungsmodellen verglichen.

Die herangezogenen Messdaten stammen von Deponien aus Österreich, Frankreich, Schweden, den Niederlanden und den USA. Die dabei angewandten Methoden zur Bestimmung der diffusen Methanemissionen sind: Gasbox- oder Kammermessungen, Tracergas-Methode und Bilanz-Methode. Unter Berücksichtigung der angewandten Messmethode und der zeitlichen Messauflösung wurden die Messdaten auf ihre Aussagekraft hinsichtlich der tatsächlichen emittierten Methanmenge bewertet. Vergleiche verschiedener Messmethoden am selben Standort zeigten, dass die Ergebnisse unterschiedlicher Messverfahren relativ gut übereinstimmen. Diese Tatsache wurde als wesentliches Indiz für die Zuverlässigkeit der Messverfahren und der damit ermittelten Messdaten gewertet. Bei Verwendung der Gasboxmethode hängt die Zuverlässigkeit der ermittelten Emissionsfracht sehr stark von der Anzahl bzw. Auswahl der Messpunkte ab. Für den zeitlichen Verlauf der gemessenen Methanemissionen gilt, dass eine starke Abhängigkeit vom Luftdruck beobachtet werden kann. Bei einer Vielzahl von Messdaten kann allerdings davon ausgegangen werden, dass diese während unterschiedlicher Luftdruckverhältnisse aufgenommen wurden und daher im Mittel den tatsächlichen Emissionen entsprechen.

Eine Gegenüberstellung der gemessenen Methanemissionen von offenen und abgedeckten (abgedichteten) Abschnitten einzelner Deponien zeigte deutlich, dass der überwiegende Teil (>70%) der gesamten Methanemissionen im Bereich der offenen Schüttfläche erfolgt. Durchgeführte Emissionsmessungen im Bereich offener Flächen stellen somit zumindest einen guten Anhaltspunkt für die Ermittlung der zum Messzeitpunkt emittierten Methanmenge der Deponie dar.

Für die Berechnung der Methanproduktion wurde das Deponiegasbildungsmodell von Tabasaran-Rettenberger (1987) herangezogen. Die Eingangsparameter des Modells wurden in Übereinstimmung mit Studien des Umweltbundesamtes gewählt.

Ein Vergleich der dokumentierten Messdaten (Summe aus Messungen diffuser Methanemissionen, aktiv erfasstem Methan und 20% Methanoxidation in der Oberflächenabdeckung) mit Rechendaten nach Tabasaran-Rettenberger zeigt, dass es bei Verwendung der Eingangsparameter gemäß Umweltbundesamt zu einer generellen Überschätzung der jährlich emittierten Methanmengen von Deponien kommt. Im Mittel wird mit dem Modell die doppelte jährliche Emissionsfracht an Methan prognostiziert. Die Gründe dafür sind einerseits ein zu hoher Rechenwert für den Gehalt an biologisch abbaubaren Kohlenstoff, wie ein Vergleich mit verschiedensten Literaturdaten von Haus- bzw. Restmüllanalysen zeigt, und andererseits die Tatsache, dass unter Deponiebedingungen über einen Zeitraum von 20 - 100 Jahren nur ein Teil des biologisch abbaubaren Kohlenstoffes tatsächlich mineralisiert werden kann.

INHALTSVERZEICHNIS

KURZFASSUNG

1	EINFÜHRUNG1
2	ARBEITSZIEL
3	METHODIK
3.1	Allgemeines
3.2	Methoden zur Emissionsmessung
3.3	Deponiegasbildungsmodelle
4	RESULTATE
4.1	Gemessene Methanemissionen
	4.1.1 Boxen- oder Kammermessungen
	4.1.2 Messungen mittels Tracergas-Methode
	4.1.3 Messungen mittels Bilanz-Methode
	4.1.4 Messungen mittels Isotopen Methode
4.2	Berechnete Methanbildung
4.3	Gegenüberstellung Messdaten – Rechendaten
	4.3.1 Sensitivitätsanalyse der Berechnungen
	4.3.2 Gründe für Unterschiede zwischen Mess- und Rechendaten
5	ZUSAMMENFASSUNG UND SCHLUSSFOLGERUNG
6	ABBILDUNGS- UND TABELLENVERZEICHNIS 59
6.1	Abbildungsverzeichnis
6.2	Tabellenverzeichnis
7	LITERATUR
8	ANHANG69
8.1	Tabellarische Zusammenstellung der berechneten Methanproduktionsverläufe 69
8.2	Graphische Gegenüberstellung der berechneten und gemessenen Methanproduktion
8.3	Güterzusammensetzung der Abfälle in Österreich und den USA

1 EINFÜHRUNG

Mit dem Inkrafttreten der Richtlinie 96/61/EG der Europäischen Union über die integrierte Vermeidung und Verminderung der Umweltverschmutzung (**IPPC**-Richtlinie: engl. "Council Directive concerning Integrated Pollution Prevention and Control"), wurde in Artikel 15 (3) die Grundlage zum Aufbau eines EU-weiten, anlagenbezogenen Schadstoffregisters geschaffen. Form und Inhalt dieses Schadstoffregisters wurden in der Entscheidung der Kommission 2000/479/EG über den Aufbau eines Europäischen Schadstoffregisters (**EPER** – **E**uropean Pollutant Emission Register) festgeschrieben. Die Veröffentlichung dieses Registers durch die Kommission, soll den Vergleich der Emissionen einzelner Anlagen (sogenannter EPER-Betriebseinrichtungen) in der Europäischen Union ermöglichen.

Die nationalen Rechtsgrundlagen in Österreich für das EPER wurden durch die Verordnung über die "Meldung von Schadstoffemissionsfrachten für die Erstellung eines Europäischen Schadstoffemissionsregisters (**EPER-V**)" im Juli 2002 geschaffen.

Im Anhang 1 der IPPC-Richtlinie sind jene industriellen Tätigkeiten ausgewiesen, die in den Anwendungsbereich der IPPC-Richtlinie fallen. Alle Betriebseinrichtungen, die eine oder mehrere dieser industriellen Tätigkeiten durchführen, sind im EPER enthalten. Dabei müssen allerdings nur die Emissionen jener Schadstoffe berichtet werden, deren Jahresfracht bestimmte Schwellenwerte überschreitet. Mit dem Erreichen des EPER-Schwellenwertes ist die Emissionsbeitragspflicht dieser Betriebseinrichtung verbunden.

Abfallbehandlungsanlagen sind laut EPER-V auf ihre Emissionen zu überprüfen, sofern folgende Anlagenkapazitäten überschritten werden:

- Anlagen zur thermischen oder stofflichen Verwertung von gefährlichen Abfällen und Altölen mit einer Kapazität von mehr als 10 t/d oder 3.500 t/a
- Anlagen zur thermischen Behandlung von Hausmüll oder hausmüllähnlichen Gewerbeabfällen mit einer Kapazität von mehr als 3 t/h oder mehr als 25.000 t/a.
- Anlagen zur Ablagerung von Abfällen mit einer Kapazität von mehr als 10 t/d oder einer Gesamtkapazität von 25.000 t ausgenommen Bodenaushub- oder Baurestmassendeponien
- Anlagen zur Lagerung von gefährlichen Abfällen, ausgenommen die Lagerung am Entstehungsort, mit einer Kapazität von mehr als 10 t/d oder mehr als 3.500 t/a
- Anlagen zur sonstigen Behandlung von gefährlichen Abfällen und Altölen mit einer Kapazität von mehr als 10 t/d oder 3.500 t/a
- Anlagen zur biologischen, chemischen oder physikalischen sonstigen Behandlung von nicht gefährlichen Abfällen mit einer Kapazität von mehr als 50 t/d oder mehr als 17.500 t/a.

Die Erhebung der relevanten emittierten Stofffrachten gestaltet sich je nach Betriebseinrichtung und betrachtetem Schadstoff unterschiedlich schwierig.

Problematisch bei der Erhebung emittierter Schadstofffrachten sind vor allem jene Anlagen, bei denen große Mengen an diffusen Emissionen auftreten, da diese messtechnisch nur mit sehr hohem Aufwand oder überhaupt ungenügend quantifizierbar sind.

Im Bereich der Abfallwirtschaft zählen neben Deponien vor allem mechanisch-biologische Abfallbehandlungsanlagen sowie Aufbereitungsanlagen für gefährliche Abfälle zu jenen Einrichtungen, deren Anteil diffuser Emission in die Luft relativ hoch ist (UBA, 2001).

Für den Luftschadstoff Methan ist für Deponien (IPPC-Anlage), die mit Abfällen mit hohem Gehalt an organischem Kohlenstoff verfüllt werden bzw. wurden (Hausmülldeponie bzw. angepasste Massenabfalldeponie) ein Überschreitung des EPER-Schwellenwertes von 100 t CH_4/a (entspricht 15 Nm³ CH_4/h) zu erwarten. In diesem Fall ist vom Deponiebetreiber gemäß Schadstoffemissionsregister Verordnung (EPER-V) die jährlich emittierte Methanfracht bekannt zugeben.

Aufgrund der Problematik die sich bei Emissionsmessungen diffuser Quellen, wie Deponien sie darstellen, ergeben, wird teilweise versucht die Emissionen mit Hilfe mathematischer Gasbildungsmodelle abzuschätzen. Diese Modelle beruhen einerseits auf theoretischen Überlegungen und andererseits auf kleinmaßstäblichen Versuchen im Labor.

Inwieweit die Resultate der mathematischen Modellrechnungen mit den gemessenen Methanemissionen auf Deponien übereinstimmen, soll durch einen Vergleich von Modellergebnissen mit Literaturdaten von Emissionsmessungen (diffuse Methanemissionen und aktiv erfasstes Methan) auf Deponien abgeschätzt werden.

2 ARBEITSZIEL

Die Ziele der Studie "Methanemissionen aus Deponien – Bewertung von Messdaten (METHMES) sind

- 1. Literaturzusammenstellung bereits durchgeführter Messungen von Methanemissionen aus Deponien
- 2. Bewertung der Messdaten, dahingehend, ob und welche Aussagen zu den gesamten Methanemissionen der einzelnen Deponien abgeleitet werden können
- 3. Gegenüberstellung von Emissionen aus offenen und abgedeckten Flächen
- 4. Vergleich der Messergebnisse mit mathematischen Modellrechnungen unter Berücksichtigung der vom Umweltbundesamt bzw. vom ÖWAV (Arbeitsbehelf "EPER") angewandten Methoden
- 5. Interpretation eventueller Unterschiede zwischen den Methanemissionen laut Modellrechnung und Messung

3 METHODIK

3.1 Allgemeines

Vereinfacht gesehen entsteht in Deponien aus mikrobiell abbaubarem Kohlenstoff unter aeroben Bedingungen Kohlendioxid und Wasser und unter anaeroben Bedingungen (Vergärung, Fermentierung) Methan und Kohlendioxid.

Solange der abgelagerte Abfall mit der Luft in Kontakt steht, laufen in der Deponie aerobe Umsetzungsprozesse ab. Diese sind prinzipiell mit Kompostierungs- bzw. Rottevorgängen vergleichbar, wenngleich die Randbedingungen wie Wassergehalt, Temperatur und Nährstoffverteilung im Gegensatz zu Kompostierungs- und Rotteanlagen in Deponien dafür nicht optimal sind. Mit Hilfe des Luftsauerstoffes setzen aerobe Bakterien organische Substanzen in Kohlendioxid und Wasser unter Freiwerdung von Energie (Wärme) um. Sobald die Verbindung zum Luftsauerstoff durch Überlagerung mit neu eingebautem Abfall und anschließende Verdichtung unterbunden wird, kommen die aeroben Abbauprozesse zum Erliegen. Die organische Substanz im Abfall wird dann über anaerobe Abbauprozesse abgebaut.

Vereinfacht lässt sich der anaerobe Abbauprozess in folgende Phasen unterteilen (siehe Abbildung 3-1 und Abbildung 3-2):

• Phase der Hydrolyse (I)

Aus der Biomasse (Fette, Proteine, Kohlehydrate) werden durch Einwirkung fermentativer Bakterien langkettige Fettsäuren, Glycerin, Zucker und Aminosäuren gebildet.

• Phase der Versäuerung (Acidogene und acetogene Stufe) (II)

Es dominiert der Abbau der in Phase I gebildeten langkettigen Fettsäuren. Dabei entstehen mit Hilfe acetogener Bakterien direkt oder über Zwischenprodukte (organische Säuren und Alkohole) Essigsäure, Kohlendioxid und Wasserstoff.

• Startphase der Methanbildung (Methanogene Stufe) (III)

Aus Essigsäure, Kohlendioxid und Wasserstoff beginnt sich unter Einwirkung methanogener Bakterien Methan zu bilden. Nach Stegmann & Spendlin (1987) liegt der Grund für den relativ späten Start der Methanbildung einerseits in der um den Faktor 10 bis 20 niedrigeren Vermehrungsrate der methanogenen Bakterien im Vergleich zu den acetogenen, andererseits wirken sich hohe Konzentrationen organischer Säuren negativ auf methanogene Bakterien (optimaler pH-Wert um 7) aus.

• Stabile Methanphase (IV)

Aufgrund des sich einstellenden Gleichgewichts zwischen den einzelnen Abbaureaktionen stellt sich schließlich eine konstante Gasproduktion ein. Der Methananteil im Deponiegas ist > 50%. Im Gas finden sich neben Kohlendioxid als zweitem Hauptbestandteil noch geringe Anteile an Schwefelwasserstoff und Spuren diverser flüchtiger Substanzen. Baccini et al. (1992) rechnen mit einer Dauer der "intensiven Reaktorphase", in der verstärkt Gas gebildet wird, von ein bis zwei Jahrzehnten.

• Aerobe Phase (V)

Für diese Phase ist ein Rückgang der Gasproduktion - und somit ein Rückgang der messbaren biologischen Aktivität - charakteristisch. Es dominieren im Deponiekörper nunmehr sehr schwer und langsam abbaubare organische Substanzen (hauptsächlich Huminstoffe, Lignin und Kunststoffe). Weiters ist diese Phase durch Intrusion von Luftsauerstoff gekennzeichnet. Es kommt allmählich wieder zu einer Etablierung oxidierender Verhältnisse. Der

Zeithorizont bis zur Etablierung aerober Verhältnisse im Deponiekörper liegt laut Berechnungen von Bozkurt (1998) im Bereich von Jahrhunderten.

Abbildung 3-1 Vereinfachtes Schema der in einer "Hausmülldeponie" ablaufenden anaeroben Prozesse. (nach Stegmann & Spendlin, 1987)

Abbildung 3-2 Nach Phasen (I-V) aufgeschlüsselte Zusammensetzung von Deponiegas und -sickerwasser (Farquhar & Rovers, 1973)

Das entstehendes Deponiegas verlässt den Deponiekörper diffus über die Deponieoberfläche in die Atmosphäre oder sofern die seitliche Abdichtung mangelhaft ist, auch lateral in den umgebenden Boden bzw. das umgebende Gestein. Für den Fall einer aktiven oder passiven Entgasungseinrichtung wird ein Teil des Deponiegases gezielt gefasst und über entsprechende Behandlungs- bzw. Verwertungseinrichtungen (Gasfackel, Gasmotoren, Filteranlagen) geführt (siehe Abbildung 3-3). Ein geringer Teil des Deponiegases kann den Deponiekörper auch über die Sickerwasserfassung verlassen.

Abbildung 3-3 Methanemissionen von Deponien

Nach Raschke (1987) erfolgt die Ausbreitung der Gase einerseits durch einfache Diffusion, andererseits durch konvektiven Transport infolge von Druckdifferenzen zwischen dem Gas im Deponiekörper und der Atmosphäre. Böschungsbereiche sind bevorzugte Austrittstellen von Deponiegas, da hier aufgrund von Setzungen häufig Risse entstehen durch die das Gas leichter entweichen kann (Dorn und Rettenberger, 1987).

Während die über Entgasungseinrichtungen gefasste Methanmenge relativ einfach über Gaskonzentrationsmessungen und die abgesaugte Deponiegasmenge bestimmbar ist, stellen diffuse Methanemissionen in die Atmosphäre und die umgebende Bodenluft messtechnisch ein großes Problem dar. Die Tatsachen, dass einerseits Deponiegasemissionen nicht gleichmäßig verteilt über die Deponieoberfläche erfolgen sondern stark von der Heterogenität der Abfallschüttung (bevorzugte Austrittstellen) bestimmt werden und andererseits der Gasaustritt sehr stark von den meteorologischen Bedingungen (Änderungen des Luftdrucks) abhängt (Czepiel, 2000), erschweren die messtechnische Erfassung dieser Emissionen.

Abbildung 3-4 Systembild Methanemissionen von Deponien

Theoretisch gesehen errechnet sich die gesamte Methanproduktion aus der Summe aus Methanemission, aktiv erfasstem Methan, Methanoxidation und gelöstem Methan im Sickerwasser. Angestellte Berechungen zeigen, dass der Austrag von Methan über den Wasserpfad vernachlässigt werden kann. Bei einer Wasserlöslichkeit von Methan von 25 mg/l (bei 20°C und 1 bar) liegt die ausgetragene Methanmenge pro 1.000 m³ Sickerwasser im Bereich von 35 Nm³ CH4. Für die Deponie Asten mit einem mittleren jährlichen Sickerwasseranfall (vertikale Umschließung) von 100.000 m³ errechnet sich ein Methanaustrag über das Sickerwasser von 3.500 Nm³/a während die diffus emittierte Methanmenge 4.300.000 Nm³/a beträgt.

Die gesamte Methanproduktion errechnet sich daher folgendermaßen:

$$M_{prod} = M_{diff.Emissionen} + M_{aktiv} + M_{oxidiert}$$
 Gleichung 3-1

3.2 Methoden zur Emissionsmessung

Die einfachste Methode zur qualitativen Bestimmung diffuser Methanemissionen von Deponien ist die Begehung mit einem Flammenionisationsdetektor (FID). Diese Methode erlaubt allerdings lediglich Aussagen über Methankonzentrationen in unmittelbarer Nähe der Deponieoberfläche. Massenströme von Methan sind damit nicht bestimmbar. Das Messprinzip beruht darauf, dass die elektrische Leitfähigkeit einer Wasserstoffflamme durch hinzukommende ionisierbare Anteile, wie z.B. Methan erhöht wird. Die Nachweisgrenze dieser Detektoren liegt bei einer Methankonzentration von unter 5 ppm. Aufgrund der fehlenden Volumenstrommessung lassen FID-Begehungen auf Deponien nur qualitative Aussagen über bevorzugte Emissionsbereiche zu. Teilweise wurde versucht (Rettenberger, 1987, Flögl, 2002) eine Korrelation zwischen FID-Messwerten (Methankonzentrationen) und Messwerten aus

Box- bzw. Kammermessungen (Methanströme) herzustellen. Dabei ist allerdings zu bedenken, dass eine solche Korrelation wenn überhaupt nur für den speziellen Standort und die zum Messzeitpunkt vorherrschenden klimatischen Bedingungen (Windstärke, Luftdruck) Gültigkeit hat.

Methankonzentrationen auf Deponien lassen sich auch mittels FTIR-(Fourier-Transform-Infrarot-Spektometrie) und TDL-(Tunable Diode Laser) Messungen bestimmen. Vereinfacht ausgedrückt beruht das Messprinzip beider Methoden auf dem speziellen Adsorptionsspektrum des zu messenden Gases. Die Abschwächung der Infrarotstrahlung bestimmter Wellenlängen zwischen Emitter und Detektor wird bei bekannter Wegstrecke zur Bestimmung der Gaskonzentration verwendet. Es ist damit möglich die mittlere Methankonzentration entlang der Wegstrecke des Strahles zu bestimmen. Ohne zusätzliche Volumenstrommessung besitzen FTIR- und TDL-Messungen dieselbe Aussagekraft (oberflächennahe Methankonzentration) wie FID-Sondenmessungen, wobei man als Ergebnis jedoch Mittelwerte von Gaskonzentrationen über längeren Messstrecken bzw. auch Flächen erhalten kann.

Die zurzeit gängigste Methode zur Erfassung der Methanemissionen von Deponieoberflächen stellen die so genannten "Gasboxen" oder Gaskammern dar. Das Grundprinzip dieses Verfahrens ist in der Literatur unter "Lemberger Box" bekannt und beschrieben (Rettenberger, 1982). Mit dieser Methode lassen sich der austretende Gasvolumenstrom und auch die Konzentration des austretenden Gases messen. Es können somit die im Bereich der Kammeraufstandfläche auftretenden Methangasemissionen quantifiziert werden. Die Betriebsweise der Gasboxen kann unterschiedlich erfolgen. Man unterschiedet zwischen statischer und dynamischer Betriebsweise (Fischer, 1999).

Das statische Verfahren sieht vor, dass die Box mit definiertem Gas gefüllt wird und danach dessen Verdrängung durch das einströmende Deponiegas beobachtet wird. Aus der Einströmzeit des Deponiegases und der gemessenen Gaszusammensetzung kann auf die im Aufstellungspunkt austretende Deponiegasmenge und somit Methanmenge geschlossen werden. Zu beachten ist dabei, dass ein Druckausgleich der Box zur Atmosphäre vorzusehen ist, da ansonsten durch das Messprinzip das zumessende System beeinflusst wird.

Das dynamische Verfahren beruht darauf, dass die Gasbox mit konstantem Luftstrom durchströmt wird und die sich einstellende Gaskonzentration in der Abluft gemeinsam mit dem Luftdurchsatz verwendet wird um den emittierten Deponiegasstrom zu bestimmen.

Der große Nachteil der Boxenmessungen liegt darin, dass ihre Ergebnisse nur für den Aufstellort, d.h. punktförmige Gültigkeit besitzen. Weiters ist eine kontinuierliche Aufzeichnung der Emissionen über einen längeren Zeitraum mit hohem Arbeits- und Analyseaufwand verbunden. Eine Hochrechnung von Punktaufnahmen auf die Gesamtemission einer Fläche kann nach unterschiedlichen statistischen Methoden erfolgen. Zumeist wird die Deponieoberfläche entsprechend des Kammeraufstellrasters in Teilflächen unterteilt, weiters wird angenommen, dass die gemessene Emissionsrate der Kammeraufstellfläche Gültigkeit für die gesamte zugeordnete Teilfläche besitzt. Durch Addition der Produkte der einzelnen Teilflächen und Emissionsraten wird die gesamte Deponiegasemission berechnet.

Eine Messmethode die es ermöglicht größere Emissionsflächen direkt zu erfassen, ist die so genannte "Tracergas-Methode". Das Prinzip beruht darauf, dass an der Deponieoberfläche ein Tracergas (z.B.: Schwefelhexafluorid SF_6) mit bekannter Menge freigesetzt wird und die Konzentration dieses Gases windabwärts der Deponie an einer festgelegten Stelle gemessen wird. Aus dem Verhältnis von integrierter Konzentration des Tracergases an der Messstelle und der freigesetzten Menge des Gases wird ein atmosphärischer Transferkoeffizient be-

stimmt (Trégourès et al., 1997). Mithilfe dieses Transferkoeffizienten lässt sich bei bekannter Methankonzentration der Luft an der Messstelle die gesamte Methanemission der Deponie berechnen. Der Transferkoeffizient ist klarerweise von den Windverhältnissen und von der Entfernung der Messstelle von der Deponie abhängig.

Eine Methode die ähnlich der Tracergas-Methode auf der micrometeorologischen Ausbreitung des emittierten Methangases beruht, ist die Bilanz-Methode (Fowler & Duyzer, 1989). Grundprinzip dieses Verfahrens ist das Massenerhaltungsgesetz. Bei dieser Methode werden sowohl Windgeschwindigkeits- als auch Methankonzentrationsprofile windabwärts der Deponie aufgenommen. Durch Integration des Produktes aus horizontaler Windgeschwindigkeit und Methankonzentration über die Profilhöhe ergibt sich der emittierte Methanstrom. Dieses Verfahren eignet sich auch zur längeren kontinuierlichen Erfassung flächiger Emissionensquellen (Oonk & Boom, 2000).

Methanemissionen von Deponien können auch mittels Methankonzentrationsmessungen in unterschiedlicher Tiefe der Abdeckschicht errechnet werden. Dieses Verfahren beschrieben von Rolston (1986) beruht auf dem Fick'schen Diffusion Gesetz. Bei bekanntem Diffusionskoeffizienten und Gaskonzentrationsgradienten innerhalb der Abdeckschicht lässt sich unter der Annahme, dass kein konvektiver sondern lediglich diffusiver Transport des Deponiegases stattfindet die Emissionsrate von Methan berechnen. Die Anwendung dieser Methode kann durch die Nichtberücksichtigung von konvektivem Gastransport zu einer Unterschätzung der Emissionen führen. Andererseits gibt Lagerkvist (1997) an, dass es auch zu einer beachtlichen Überschätzung der Emissionen kommen kann, da eine eventuelle Methanoxidation zu einem verstärkten Konzentrationsgradienten führt und damit zu rechnerisch höheren Emissionen. Die Aussagekraft dieser Methode ist auf eine punktförmige Beobachtungstelle (Profilstelle) beschränkt.

Um den Anteil des ausströmenden Methans zu bestimmen, der durch Mikroorganismen oxidiert wird, kann die so genannte C13-Isotopenmethode (Coleman et al., 1981) angewandt werden. Sie beruht darauf, dass in biologischen Prozessen bevorzugt leichtere Isotope an Reaktionen teilhaben. Das bedeutet, dass Methan, das aus Bereichen emittiert wo Methanoxidation stattfindet, mit dem Isotop ¹³C angereichert ist. Durch Bestimmung der Isotopenzusammensetzung unterhalb und oberhalb der Deponieabdeckung, lässt sich anhand der Anreicherung von ¹³C der oxidierte Anteil an Methan bestimmen. Dieses Verfahren ist in seiner Anwendung sehr eingeschränkt, da die Bestimmung der Isotopenzusammensetzung mit hohem finanziellem Aufwand verbunden ist. Bisher wurden nur vereinzelt Messungen an Deponien in den USA, Schweden und Deutschland durchgeführt (z.B.: Chanton et al., 1999; Börjesson, et al. 2001).

Methode	Rämliche Auflösung	Zeitliche Auflösung	Erfahrungen	Vor- und Nachteile
Bodenprofil- messungen	m²	h	wenige	hohe Unsicherung der Methode, Beeinflus- sung des zu messenden Systems
FID- Begehung	D- ehung m ² min zahlreiche qua stru- bzw. lineare Messung min einige we we		zahlreiche	nur CH4-Konzentrationsmessung, keine quantitative Aussagekraft über Emissions- strom, geeignet zum Aufspüren bevorzugter Emissionsstellen
FTIR- bzw. TDL- Messung			nur CH4-Konzentrationsmessung, wird oft in Kombination mit Tracergas-Methode zur Bestimmung der CH4-Konzentration ver- wendet	
Gasboxen	m²	h	zahlreiche	punktförmige Aussagekraft, zeitintensiv (viele Austellpunkte bei größeren Flächen benötigt), einfache Messanordnung, geeignet um räumlich und zeitliche Variation der Emissionen zu erfassen
Tracergas- Methode	gesamte Deponie	h	wenige	genauste Messmethode, jedoch sehr kosten- intensiv
Bilanz- Methode	>2000m ² bis einige ha	kontinuierl. Messung möglich	einige	gut geeignet zur Automation
C13-Isotopen Methode	gesamte Deponie	h	wenige	zur Methanoxidationsmessung verwendet, sehr kostenintensiv

 Tabelle 3-1
 Vergleich von Messmethoden (ergänzt nach Scharff et al., 2001)

3.3 Deponiegasbildungsmodelle

In der Literatur existieren zahlreiche Modelle zur Beschreibung der Deponiegasbildung. Sie unterscheiden sich sowohl in der Komplexität als auch in ihren grundlegenden Annahmen hinsichtlich der biologischen Abbaubarkeit organischer Substanzen. Im Folgenden werden die im deutschen Sprachraum gängigsten Modelle kurz vorgestellt.

Theoretisch können aus 12 g Kohlenstoff durch anaeroben Abbau 22,414 Nl Deponiegas entstehen, unabhängig davon in welchem Verhältnis Methan und Kohlendioxid gebildet werden. Umgerechnet ergibt dies 1,868 Nl Deponiegas pro g abgebauten Kohlenstoff.

Theoretisches Gasbildungspotential:

$$G_t = 1,868 \cdot TOC_{abb}$$

Gleichung 3-2

GtGasbildungspotential [Nm³/t Müll]TOCabbabbaubarer organischer Kohlenstoffgehalt [kg/t Müll]

Tabasaran und Rettenberger formulierten 1987 basierend auf diesen theoretischen Überlegungen eine Gleichung (siehe Tabelle 3-2) mit dessen Hilfe das Gasbildungspotential bei Kenntnis des biologisch abbaubaren organischen Kohlenstoffgehaltes berechnet werden kann. Die Gleichung ist an den anaeroben Umsatz von Klärschlamm in Faulbehältern angelehnt und berücksichtigt einen temperaturabhängigen Anteil (0,014*T+0,28) organischer Kohlenstoff-

verbindungen, die nicht mineralisiert werden sondern zum Aufbau der Biomasse verwendet werden. Der zeitliche Verlauf der Gasbildung folgt nach Tabasaran-Rettenberger (1987) einer Exponentialfunktion mit einer Halbwertszeit von ungefähr 8 Jahren. Dieses Modell zählt zu dem gebräuchlichsten Verfahren wenn es gilt die Deponiegasproduktion zu prognostizieren. In verschiedenen Studien zur Treibhausgasproblematik (Hackl & Mauschitz, 1998) fand dieses Modell ebenso Anwendung wie im derzeitigen Arbeitsbehelf "EPER" (ÖWAV, 2002). Wichtigster Eingangsparameter in das Modell ist der Gehalt an biologisch abbaubarem Kohlenstoff.

Andere Modelle, wie das Schweizer-Modell (Bundesamt für Umweltschutz, 1982 zitiert in Ehrig, 1986) oder das Modell von Ehrig (1986) wurden vor allem entwickelt, um die tatsächliche Gasproduktion realistischer nachzuzeichnen. Im Gegensatz zum Tabasaran-Rettenberger-Modell, welches von einer maximalen Deponiegasbildung beim Zeitpunkt t = 0 ausgeht, zeigt der Kurvenverlauf dieser Modelle einen langsamen Anstieg bis zu einem Maximum, das 3 bis 6 Jahre nach dem Einbau der Abfälle erreicht wird. Erst dann nimmt die produzierte Deponiegasmenge exponentiell mit der Zeit ab. Die Gesamtgasmenge G_{max} wurde von Ehrig, im Labor anhand von mit Abfällen gefüllten Lysimetern bestimmt.

Das Deponiegasmodell entwickelt von Hoeks-Oosthoeks (1991) ist ähnlich jenem von Tabasarn-Rettenberger aufgebaut. Es wird jedoch nicht von einer einheitlichen Halbwertszeit der organischen Substanz im Abfall ausgegangen, sondern die Abfälle in leicht und schwer abbaubar mit zugehörigen Halbwertszeiten von 1 und 15 Jahren unterteilt. Des Weiteren wird gegenüber Tabasaran und Rettenberger ein höherer Anteil des biologisch abbaubaren Kohlenstoffs nicht mineralisiert, was zu generell niedrigeren Gasproduktionsraten führt.

Eine noch feinere Unterteilung hinsichtlich der biologischen Abbaugeschwindigkeiten der organischen Substanz im Müll wurde von Baumeler et al. (1998) durchgeführt. Sie adaptierten das Modell von Marticorena et al. (1993) dahingehend, dass der organische Kohlenstoff in 3 Kategorien (leicht abbaubar, schwer abbaubar und sehr schwer abbaubar) mit unterschiedlicher Halbwertszeit (2,7; 25 und 2600 Jahre) unterteilt wurde. Das jeweilige Gesamtgasbildungspotential für die einzelnen Fraktionen (leicht abbaubar, schwer abbaubar und sehr schwer abbaubar) wurde über das theoretisch mögliche Gasbildungspotential (1,868 Nl pro g Kohlenstoff) berechnet.

Alle genannten Modelle basieren einerseits auf theoretischen Überlegungen oder andererseits auf Gasmessungen an Abfalllysimetern im Labor. Die größten Unsicherheiten bei der Übertragung von theoretischen Daten bzw. Labormessungen auf bestehende Deponien sind:

- Theoretische Betrachtungen gehen zumeist von optimalen (theoretisch möglichen) Bedingungen aus und geben daher maximale Wertebereiche wieder.
- Im Labor werden unter kontrollierten zumeist optimierten Bedingungen beschleunigte Prozesse gemessen, die den wirklichen Reaktionen und Bedingungen nicht entsprechen. Ebenso können Laborversuche über längere Zeiträume ablaufende Vorgänge nicht abbilden. (z.B.: möglicher mikrobieller Abbau von Kunststoffen)
- regionale Unterschiede wie Abfallzusammensetzung, Vorbehandlung des Abfalls, die Betriebsbedingungen auf der Deponie oder unterschiedlichen klimatische Voraussetzungen

Mathematische Modelle zur Berechnung der Deponiegasbildung (nach Baumeler et al., Tabelle 3-2 1998; Quellen: ¹⁾ Tabasaran & Rettenberger, 1987; ²⁾ Bundesamt für Umweltschutz, 1982 zitiert in Ehrig, 1986; ³⁾ Ehrig, 1986; ⁴⁾ Hoeks & Oosthoeks, 1991; ⁵) Marticorena *et al.*, 1993)

Modell	Vorgaben der Autoren
Tabasaran-Rettenberger-Modell ¹⁾ G = $1.868*TOC*(0.014*T+0.28) = m^{3}/t$	$k = 0.04 a^{-1}$ TOC $u = 170-200 kgC/t$
$G_{(t)} = G_p^*(1-10^{-(t^*k)}) = m^3/t$ Deponiegas	T = 30 °C
Schweizer-Modell ²⁾ $G_{(t)} = A^*(1-e^{-(t/k_1)})^*e^{-(t/k_2)} = m^3/(t^*a)$ Deponiegas	A = 13,61 m ³ /(t*a) $k_1 = 1,1 a$ $k_2 = 15,72 a$
Ehrig-Modell ³⁾ $G_{(t)} = G_{tmax} * e^{-k1*(t_1-t)} = m^3/(t*a)$ Deponiegas $G_{(t)} = G_{tmax} * e^{-k*(t-t_1)} = m^3/(t*a)$ Deponiegas	$ \begin{array}{l} G_{max} &= 100 - 180 \ m^3/t; \ \varphi \ 120 \\ k &= 0,139 \ a^{-1} \\ G_{tmax} = (G_{max} * k) = 13,9 - 25,0 \ m^3/(t*a) \\ k_1 &= 3,0 \ a^{-1} \ / \ t_1 = 3 \ a \end{array} $
Hoeks-Oosthoeks-Modell ⁴⁾ $G_{(t)} = \Sigma 0.8 \text{ Pi}*(1-e^{-(t^*ki)}) = m^3/t \text{ Deponiegas}$	$ \begin{array}{ll} k_a &= 0,693 \; a^{-1}; & t_{1/2} = 1 \; a \\ k_b &= 0,04 \; a^{-1}; & t_{1/2} = 15 \; a \end{array} $
Marticorena-Modell ⁵⁾ $MP_{(t)} = MP_{(0i)} * e^{-(t/k_i)} = m^3/t$ Deponiegas	
Abkürzungen:A= Maximale Gasproduktionsrate $[m^3/(t^*a)]$ k= Geschwindigkeitskonstante $[a^{-1}]$ t= Ablagerungszeit $[a]$ G_{max} = Maximale Deponiegasmenge $[m^3/t]$ G_{tmax} = Maximale Gasbildungsrate $[m^3/(t^*a)]$ t_1 = Zeitpunkt der maximalen Gasproduktion k_1 = Zeitkonstante (ansteigender Ast) $[a]$	$\begin{array}{ll} MP_{(0)} &= Deponiegas bildung spotential [m^3/t] \\ MP_{(t)} &= Deponiegas bildung spotential zur Zeit t [m^3/t] \\ P_1 &= Anteil leicht abbaubarer Kohlenstoff [kgC/t] \\ P_2 &= Anteil schwer abbaubarer Kohlenstoff [kgC/t] \\ G_p &= Gaspotential [m^3/t] \\ G_t &= gebildete Deponiegasmenge [m^3/t] \\ TOC_{abb} = biologisch abbaubarer Anteil Kohlenstoff [kgC/t] \end{array}$

 $k_2 =$ Zeitkonstante (abfallender Ast) [a]

- = Geschwindigkeitskonstante (leicht abbaubar) $[a^{-1}]$ ka
- = Geschwindigkeitskonstante (schwer abbaubar) [a⁻¹] k_b

Т = Temperatur [°C] FS = Feuchtsubstanz

In der vorliegenden Studie werden die Modellrechnungen zur Methanproduktion von Deponien mit der in Österreich dafür gebräuchlichsten Methode (Luftschadstoffinventar, UBA und ÖWAV Regelblattentwurf "EPER") nach Tabasaran-Rettenberger (1987) durchgeführt. Die vielfache Anwendung dieser Methode lässt sich durch die geringe Anzahl an benötigten Eingangsparametern begründen.

4 **RESULTATE**

Aufgrund der unter Abschnitt 3.2 angeführten Problematik bei der Quantifizierung diffuser Methanemissionen, existieren nur vereinzelt Messungen von Deponien. Im Folgenden sind in der Literatur angeführte Methanemissionsmessungen auf Deponien zusammengestellt. Die Anordnung der zitierten Messungen erfolgt nach der zugrunde liegenden Messmethode.

4.1 Gemessene Methanemissionen

Für die im Folgenden durchgeführten Umrechnungen wurde folgender Umrechnungsschlüssel verwendet:

1 Nm³ CH₄ entspricht **714 g CH₄** (Normbedingungen: 0° C und 1,013 bar)

Die Messdaten wurden auf Normbedingungen bezogen, da auch im verwendeten Modell zur Gasprognoseberechnung Normbedingungen vorausgesetzt werden:

1,868 Nl/g C = 22,414 Nl / 12 g C

4.1.1 Boxen- oder Kammermessungen

Ein Grossteil von Deponiegasemissionsmessungen wurde mit Hilfe von Boxen- bzw. Kammermessungen durchgeführt. In Österreich beruhen alle veröffentlichten Gasemissionsmessungen auf Deponien auf dieser Methode. Es ist vor allem die einfache Geräteausrüstung, die für dieses Verfahren spricht. Allerdings ist zu bedenken, dass die Messergebnisse nur eine punktuelle (sowohl räumlich als auch zeitlich) Aussagekraft besitzen. Die Tracergas-Methode und auch die Bilanzmethode liefern im Vergleich dazu einen über einen größeren Flächenabschnitt integrierten Messwert, der jedoch ebenfalls nur für den Messzeitpunkt repräsentativ ist.

Im Rahmen der Studie "Klimarelevanz der Deponien in Oberösterreich" (Flögl, 2002) wurden auf den Deponien Asten und Redlham (Deponiedaten siehe Tabelle 4-2) Gasmessungen durchgeführt. Beide Deponien verfügen über ein aktives Entgasungssystem. Im Rahmen der Messungen erfolgte in einem ersten Schritt eine rasterförmige Begehung (15×15 m) der Deponieoberfläche mit einem Flamm-Ionisations-Detektor (FID) um eine qualitative Information über Gasaustrittstellen zu bekommen. Auf der Deponie Asten wurden dabei nur Bereiche mit Endabdeckung (bestehend aus abgepressten Klärschlamm) untersucht, während auf der Deponie Redlham auch Messpunkte im Bereich der Zwischenabdeckung aufgenommen (Endabdeckung bestehend aus 2-lagiger mineralischer Dichtung bzw. Bentonitmatten) wurden. Insgesamt wurde in Asten an 480 und in Redlham an 279 Punkten die Methankonzentration an der Deponieoberfläche gemessen.

Folgende Häufigkeitsverteilung der Messwerte wurde dabei festgestellt:

Abbildung 4-1 Häufigkeitsverteilung der gemessenen Methankonzentration (Flögl, 2002)

Es ist aufgrund der zur Verfügung stehenden Daten keine Trennung der Messwerte für offene und abgedeckte Deponieabschnitte möglich.

Aus Abbildung 4-1 ist die schiefe Häufigkeitsverteilung der Messwerte deutlich erkennbar. D.h. an nur wenigen Stellen der Deponie treten hohe Emissionswerte auf, während der Großteil der Oberfläche nur sehr geringe Emissionsraten zeigt.

Basierend auf den Ergebnissen der FID-Begehung wurden im 2. Schritt der Messkampagne Boxenmessungen (Kammermessungen) durchgeführt und zwar nur an jenen Rasterpunkten, mit hoher Konzentration an CH₄. Insgesamt wurden auf der Deponie Asten 25 und auf der Deponie Redlham 15 Boxen aufgestellt, wobei nur etwa ein Drittel dieser Messboxen mehrmals beprobt wurde. Es zeigte sich, dass die einzelnen Messwerte derselben Box innerhalb des Beobachtungszeitraums von 2,5 Monaten erheblich schwankten. Teilweise wurden dabei Unterschiede vom Faktor 10 beobachtet.

Die gemessenen Methanemissionen lagen zwischen 0 und 82,5 g $CH_4/(m^2h)$. Um von den wenigen Emissionsmessungen mittels Gasbox die Gesamtemission der Deponien berechnen zu können, wurde von Flögl (2002) folgender Zusammenhang zwischen Gasemission (g $CH4/(m^2h)$) und Methankonzentration (ppm) aus der FID-Begehung abgeschätzt:

FID-Messung [ppm]	Methanemissionen [g/(m²h)]	Mittelwert Methanemissionen [g/(m ² h)]
1000-9999	36 - 144	72
100-999	3,6 - 14,4	7,2
10-99	0,36 - 1,44	0,72
0-9	0,036 - 0,144	0,072

Tabelle 4-1Beziehung zwischen FID-Messwerten und Gasboxmesswerten (Flögl, 2002)

Unter Verwendung der 480 bzw. 279 FID-Messpunkte und der in Tabelle 4-1 angegebenen Beziehung wurden die Gesamtemissionen der beiden Deponien berechnet. Die FID-Begehung und Boxenmessungen erfolgten nur auf einer Teilfläche (rund 60 % der Gesamtfläche) der

jeweiligen Deponie. In Tabelle 4-2 sind die auf die gesamte Deponie hochgerechneten Emissionswerte angegeben.

	Deponie- fläche [ha]	Ablagerungs- zeitraum	deponierte Abfallmenge [t]	Abgelagerte Abfälle	Oberflächenabdeckung (% der Gesamtfläche)
Asten	17,5	1963-	3.100.000	Hausmüll, Gewerbemüll	Mineralische Dichtung + Klärschlamm (~95%)
Redlham	10,5	1972-	1.500.000	Hausmüll, Gewerbemüll	mineralische Dichtung Bentonitmatten (~50%)

Tabelle 4-2Daten der untersuchten Deponien Asten und Redlham (Flögl, 2002)

Die berechneten Methangesamtemissionen entsprechen einer mittleren Emissionsrate von 2,0 g $CH_4/(m^2h)$ (Deponie Asten) bzw. 1,2 g $CH_4/(m^2h)$ (Deponie Redlham).

Von den Autoren wird der mögliche Fehler der berechneten Methanemissionen ohne jegliche statistische Begründung mit -50 / +100 % abgeschätzt.

Die Tatsache, dass der überwiegende Anteil der gesamten Gasemissionen über einzelne lokale Austrittstellen ("hot-spots") erfolgt, stellt ein rasterförmiges Messprogramm mit anschließender arithmetischer Hochrechnung der Emissionen in Frage. Durch die "zufällige" Auswahl von Messpunkten, kann es aufgrund der schiefen Häufigkeitsverteilung (sehr wenige Emissionsstellen mit hoher Fracht und große Emissionsflächen mit sehr geringer Fracht) der Methanemissionen (siehe Abbildung 4-1) entsprechend dem Prinzip des "Nugget"-Effektes zu einer Unterschätzung der tatsächlich emittierten Fracht kommen. Vergleiche von Emissionsmessungen mit unterschiedlichen Methoden (Tregoures et al. 1999; Mosher et al., 1999, Scharff et al., 2001) zeigen allerdings, dass bei hoher Dichte an Messpunkten das Kammernsystem durchaus geeignet ist die tatsächliche Emissionsfracht zu bestimmen.

Den über FID- und Gasboxmessungen berechneten Methanemissionen stehen folgende aktive abgesaugte Deponiegas- bzw. Methanmengen gegenüber:

	Diffuse Meth	Aktiv erfasste	
	$[g CH_4/(m^2h)]$	[Nm ³ CH ₄ /h]	[Nm ³ CH ₄ /h]
Asten	2,00	489	315
Redlham	1,22	178	132

Tabelle 4-3Erfasste und emittierte Methanmengen der Deponien Asten und Redlham (Flögl,
2002; Mitteilung UBA, 2003)

Bei einer gesamten Methanproduktion von 804 bzw. 310 Nm³ CH₄/h für die beiden Deponien Asten bzw. Redlham errechnet sich damit eine mittlere Deponiegasfassungsrate von rund 40%.

Im Rahmen der Studie "Emissionen gasförmiger Substanzen aus Mülldeponien" (FTU, 1996) wurden ebenfalls Methanemissionsmessungen nach dem Prinzip der Gasboxmessungen durchgeführt. Als Messobjekt diente die Deponie Gasselsdorf in der Steiermark. Die Messun-

gen stammen aus dem 2. Betriebsjahr (1994) der Deponie. Die abgelagerte Abfallmenge lag zu diesem Zeitpunkt bei etwa 12.000 t. Dies entspricht bei einer Schüttfläche von 8.000 m² einer mittleren Schütthöhe von 1,5 m.

	Deponiefläche [ha]	Ablagerungs- zeitraum	deponierte Abfallmenge (1994) [t]	Abgelagerte Abfälle	Oberflächen- abdeckung
Gasselsdorf	0,8	1993-	12.000	Hausmüll, Gewerbemüll	offene Schütt- fläche

Tabelle 4-4Daten der untersuchten Deponie Gasselsdorf (FTU, 1996)

Es wurden 4 Aufstellpunkte direkt auf der Mülloberfläche gewählt. Die Messwerte bewegten sich in einem Bereich von 0,3-3,3 g org. C/m²h. Das entspricht umgerechnet einer Emissionsrate von 0,4 – 4,4 g $CH_4/(m^2h)$.

In einer 2. Messreihe wurden Emissionsmessungen auf einem frisch geschütteten Versuchsfeld (2,5 - 3,5 m hoch) durchgeführt. Die zwei über mehrere Monate (07/94 bis 03/95) beprobten Kammern lieferten Methanemissionsraten von 0,09 - 0,65 g/m²h.

Ähnliche Werte wurden im Rahmen einer dritten Messkampagne beobachtet. Ein Gastunnel wurde dabei auf einer frisch geschütteten Müllfläche aufgestellt und innerhalb von zwei Monaten (04/95 - 05/95) mehrmals beprobt. Die gemessenen Methanemissionen lagen dabei zwischen 0,23 - 0,47 g/(m²h).

	Diffuse Methanemissionen [g CH ₄ /(m ² h)]				
1. Messkampagne	Messpunkt 1	Messpunkt 2	Messpunkt 3	Messpunkt 4	
17/03/94	0,95-1,05*	-	-	-	
18/03/94	-	0,40-0,55*	-	-	
19/03/94	-	-	0,65-0,80*	-	
21/03/94	-	-	-	4,0-4,4*	
2. Messkampagne (Versuchschüttung)					
26 - 28/07/94	0,09-0,13*	0,25-0,40*			
4 - 6/10/94	0,20-0,28	-			
25 - 27/10/94	0,25-0,65*	-			
14 - 16/03/95	0,31-0,33	-			
3. Messkampagne					
11 - 12/04/95	0,32-0,47				
20/04/95	0,26-0,38				
26 - 27/04/95	0,32-0,38				
3 - 5/05/95	0,23-0,32				
10 - 11/05/95	0,23-0,31				

Tabelle 4-5Methanemissionsmessungen auf der Deponie Gasselsdorf (FTU, 1996)

* Werte von g org. $C/(m^2h)$ auf g $CH_4/(m^2h)$ umgerechnet

Unter der Annahme einer mittleren Emissionsrate von 0,35 g CH₄/m²h (FTU, 1996) wurde eine Methangesamtemission von 3,9 Nm³/h errechnet. Die auf der Deponie aktive abgesaugte Methanmenge liegt zwischen 1,5 und 3 Nm³/h. Die Deponiegasfassungsrate für den Messzeitpunkt beträgt somit 32 bis 43 %.

Zwei Besonderheiten der Emissionsmessungen auf der Deponie Gasselsdorf sind zu beobachten. Einerseits sind die gemessenen Emissionsraten gering im Vergleich zu Messungen auf anderen Deponien und andererseits zeigen die Ergebnisse geringere zeitliche und auch räumliche Schwankungen. Beides könnte sich auf die geringe Abfallschütthöhe von maximal 2-3 m zurückführen lassen.

Die Ergebnisse der Deponie Gasselsdorf können als Anhaltspunkt für Emissionen aus frisch geschütteten Deponieabschnitten angesehen werden.

Deponiegasemissionsmessungen mittels Gasboxen wurden auch auf zwei Deponien in Niederösterreich durchgeführt. Um dem gewünschten Datenschutz des Deponiebetreibers Rechnung zu tragen, werden die Deponien mit folgenden Synonymen bezeichnet: Deponie_A und Deponie_B.

	Deponie- fläche [ha]	Ablagerungs- zeitraum	deponierte Abfallmenge [t]	Abgelagerte Abfälle	Oberflächen-ab- deckung (% der Gesamtfläche)
Deponie_A	7	1991-	450.000	Hausmüll, Gewerbemüll	Dichtelement $(\sim 70\%)$
				Hausmüll	Bodenabdeckung
Deponie_B	4,7 1984-	700.000	Gewerbemüll	(~70%)	

Tabelle 4-6Daten der untersuchten Deponien A und B

Die Deponie_A ist seit 1991 in Betrieb. Die gesamt abgelagerte Abfallmenge beläuft sich auf 450.000 t. In letzten Jahren setzte sich der deponierte Abfall zum überwiegenden Teil aus unbehandelten Restmüll, Sperrmüll und Gewerbemüll zusammen. Die mittlere Schütthöhe liegt bei 6,5 m. Emissionsmessungen wurden nur in nicht abgedeckten Bereichen durchgeführt. Es wurden zweimal Messungen an 11 bzw. 10 Aufstellorten durchgeführt, wobei unterschiedliche Punkte beprobt wurden. Die Ergebnisse sind in Tabelle 4-7 zusammengefasst.

Mittelwert	0,22 - 7,14	<i>0,09 - 10,17</i> <i>4 20</i>	0,50 - 19,58 3 70		
12 Wantahanaiah			0,78		
12	~, / /		0.78		
11	6.49		0,61		
10	0,45	0,43	0,13		
9	7,14	4,98	7,14		
8	0,30	0,24	5,41		
7	3,68	0,09	0,82		
6	0,71	10,17	1,08		
5	0,22	0,91	0,36		
4	2,60	0,65	1,60		
3	0,32	4,33	0,87		
2	1,54	19,04	19,58		
1	2,81	1,23	6,17		
Messpunkt	am 26/06/2003	am 19/09/2003	am 2/10/2002		
	Depor	nie_A	Deponie_B		
	Diffuse Methanemissionen $[g CH_4/(m^2h)]$				

Tabelle 4-7	Emissionsmessungen	auf Deponie_	A und Deponie_B	
	8		-	

Bei einer Hochrechnung der gemittelten Emissionswerte über die betrachtete Messfläche (~14.000 m²) ergibt sich eine Gesamtemission über die Deponieoberfläche von 48 bzw. 83 Nm³ CH₄/h. Dem steht eine aktiv abgesaugte Methanmenge von 9 bis 14 Nm³/h gegenüber.

Die Deponie_B ist seit 1984 in Betrieb. Die deponierte Abfallmenge beläuft sich auf 700.000 t, wobei seit 1992 rund 410.000 t deponiert wurden. Die mittlere Schütthöhe liegt bei 15 m. Analog zu Deponie_A wurden Emissionsmessungen ebenfalls nur im nicht abgedeckten Schüttbereich durchgeführt. Insgesamt wurde an 12 Messpunkten die Methanemissionsrate gemessen:

Die Ergebnisse zeigen analog zu Deponie_A erhebliche örtliche Schwankungen (bis zu Faktor 100). Die untersuchte Messfläche beträgt 17.000 m². Unter Verwendung einer mittleren Emissionsrate von 3,70 g CH₄/(m²h) (bzw. 5,2 Nl CH₄/(m²h)) errechnet sich damit eine Gesamtmethanemission von 88 Nm³/h. Laut Deponiebetreiber liegt die aktiv erfasste Methanmenge bei ungefähr 10 Nm³/h.

	Diffuse Meth	erfasste Mothanmongo	
	$[g CH_4/m^2/h]$	$[Nm^3 CH_4/h]$	[Nm ³ CH ₄ /h]
Deponie_A	2,40-4,20*	48 - 83	9 – 14
Deponie_B	3,70* 88		9-14

Taballa 1 0	Enfante und an	itti anto Mathanna	and day Domanian	J D
Tapelle 4-0	Eriassie una em	ullerie meinanmen	gen aer Debonien A	ипа р

* auf offene Schüttfläche bezogen

Die Unterschiede in den auf diese Weise ermittelten Methangesamtemissionen zeigen deutlich die Problematik solcher Messungen auf. Die für Deponie_A zu verschiedenen Zeitpunkten und anhand unterschiedlicher Messpunkte ermittelten Gesamtemissionsraten unterscheiden sich nahezu um den Faktor 2 (48 bzw. 83 Nm³ CH₄/h). Ob nun die tatsächlichen Emissionen am 19. September 2003 bedingt durch die meteorologischen Verhältnisse doppelt so groß waren wie am 26. Juni lässt sich nicht sagen, genauso gut könnte die Wahl unterschiedlicher Messpunkte das Ergebnis entscheidend beeinflusst haben. Es lässt sich daher aus punktförmigen Einzelmessungen geringer Anzahl (hier ein Kammeraufstellpunkt pro 1.200 m²) nur die Größenordnung der diffusen Emissionen abschätzen.

Eine Zusammenstellung von Methanemissionsmessungen an Deponien in den USA wurden von Mosher et al. (1999) publiziert. Die Emissionen wurden dabei sowohl mittels Boxenmessungen als auch mit Hilfe der Tracergas-Methode quantifiziert. In Tabelle 4-9 sind die Daten der untersuchten Deponien zusammengestellt.

Für die Messungen mittels Boxen wurde ein Aufstellraster mit einem mittleren Abstand von 60 bzw. 38 m gewählt. Zusätzlich zu den Rasterpunkten wurden Messungen an jenen Punkten der Deponieoberfläche durchgeführt, an denen bei qualitativen Voruntersuchungen (FID-Begehung) erhöhte Methankonzentrationen (",hot-spots") festgestellt wurden.

Deponie	Deponie- fläche [ha]	deponierte Abfallmenge [t]	Ablagerungs- zeitraum	Abdeckung (% der Gesamt- fläche)	Entgasungssystem (% der Gesamt- fläche)	Mess- methode
Rochester	19,8	2.780.000	1979-1992	KDB+Boden (100)	aktive (100)	Boxen
Nashua	25,3	2.230.000	1971-	- # (0)	keine (0)	Boxen + Tracer
Wayland	4,5	?	1980-	KDB+Boden (63)	passive (63)	Boxen
Sudbury	5,7	?	?	Boden (100)	keine (0)	Boxen
Landfill-A	23,0	5.700.000*	1962-1996	KDB+Boden (41)	während Messung außer Betrieb (0)	Boxen + Tracer
Landfill-B	34,0	8.700.000*	1973-	KDB+Boden (18)	aktive (95)	Tracer
Landfill-C	17,8	3.000.000*	1979-?	KDB+Boden (100)	aktive (100)	Tracer
Landfill-D	46,5	5.700.000*	ca.1930-	KDB+Boden (65)	aktive (55)	Tracer
Landfill-E	16,4	3.700.000*	ca. 1950-	KDB+Boden (40)	aktive (100)	Boxen

Tabelle 4-9Zusammenstellung der untersuchten Deponien (Mosher et al., 1999)

* Müllmasse aus Ablagerungsvolumen berechnet unter der Annahme einer mittleren Dichte von 1 t/m³, [#] Zwischenabdeckung aus 1-2m Lehmschicht

KDB ... Kunststoffdichtungsbahn

Aus den Ergebnissen der einzelnen Boxenmessungen, die zumindest einen Tag andauerten, wurde ein arithmetischer Mittelwert gebildet. Über die Deponieoberfläche und dem berechneten Mittelwert des Methanaustrittes wurden die Gesamtemissionen berechnet. Mosher et al. (1999) behaupteten, dass aufgrund der hohen Anzahl an Messpunkten, eine arithmetische Mittelwertbildung zulässig ist, wenngleich dieses Verfahren der speziellen räumlichen Verteilung der Methanemissionen auf Deponien (kleine Bereiche mit hohen Strömen und große Flächen mit sehr geringen Strömen) nicht Rechnung trägt.

In Tabelle 4-10 sind die Ergebnisse der Boxenmessungen zusammengestellt:

	Mess-	Maga	Anzahl	Diffuse Methanemissionen					aktiv
Deponie	zeit- punkt	raster	Mess- punkte	abge- deckter Bereich	offener Bereich	Punkt- Quellen	Gesamte diffuse Methanemissionen		erfasstes Methan
		[m]			[Nm ³ C	H ₄ /h]		$[g \operatorname{CH}_4/(m^2h)]$	$[Nm^3CH_4/h]$
Rochester	07/94	60	163	105	-	n.b.	105	0,38	1.000
Nashua	08/95	60	187	-	948	14	962	2,71	-
Wayland	06/95	38	76	2	11	19	32	0,50	-
Sudbury	08/94	38	75	55	-	n.b.	55	0,71	-
Landfill-A	07/95	60	177	6	1.704	n.b.	1.710	5,53	-
Landfill-B					1 5				1.600
Landfill-C	Messungen mittels Tracergas-Methode,						910		
Landfill-D		Ligomisse siene Auseminu 7.1.2.					1.850		
Landfill-E	06/95	60	197	15	270	n.b.	285	1,25	670

Tabelle 4-10Ergebnisse der Boxenmessungen (Mosher et al., 1999)

n.b. keine signifikanten Emissionen bestimmbar

Die spezifischen Emissionswerte (Methanaustritt pro Flächen- und Zeiteinheit) sind von Deponie zu Deponie stark unterschiedlich. Die Ursachen dafür sind sowohl in den Unterschieden hinsichtlich der abgelagerten Menge an Müll und dessen Zusammensetzung, dem Vorhandensein bzw. Fehlen eines Entgasungssystems und der unterschiedlichen Ausbildung der Oberflächenabdeckung zu suchen.

Die größten Methanemissionen wurden auf der Deponie "Landfill-A" festgestellt. Die mittlere Methanemissionsrate liegt bei etwa 1.710 Nm³/h (entspricht umgerechnet 5,53 g CH₄/m²h). Es zeigt sich auf Landfill-A, dass mehr als 99% des Methanaustritts im Bereich der offenen Abfallfläche erfolgt, d.h. dass die Oberflächenabdeckung bestehend aus Kunststoffdichtungsbahn und Bodenschicht somit ihre abdichtende Funktion voll erfüllt, und das sich bildende Deponiegas den Weg des geringeren Widerstandes über die unabgedeckte Deponieoberfläche sucht. Aufgeteilt ergibt sich für den Bereich der Oberflächenabdeckung eine mittlere spezifische Emissionsrate von 0,046 g CH₄/(m²h) und für die offene Schüttfläche eine Rate von 9,00 g CH₄/(m²h).

Für den Fall einer teilabgedeckten Deponie (Abdeckung beinhaltet gasdichtes Element, z.B.: intakte Kunststoffdichtungsbahn) erscheint es daher ausreichend nur den offenen Schüttbereich im Rahmen einer Emissionsmessung zu berücksichtigen, da entstehendes Deponiegas bevorzugt dort emittiert wird.

Eine Deponie, an der zu vergleichenden Zwecken Methanemissionsmessungen mit Hilfe zwei verschiedener Methoden durchgeführt wurde, ist die Deponie Falköping in Südschweden. Bei den durchgeführten Messkampagnen kam neben der Gasbox-Methode die Tracergas-Methode (Ergebnisse siehe Tabelle 4-20) zur Anwendung. Die Gasboxmessungen wurden mehrmals wiederholt. Emissionsmessungen mittels Gasboxen wurden auch auf der Deponie Hökhuvud durchgeführt.

Deponie	Deponie- fläche [ha]	Ablagerungs- zeitraum	deponierte Abfallmenge [m ³]	Schütthöhe [m]	Abgelagerte Abfälle	Oberflächen- abdeckung
Falköping	3,0	1965 - 1997	325.000	12	Hausmüll	Boden (40-100cm)
Hökhuvud	1,6	1968 - 1980	100.000	6 – 10	Hausmüll	Boden (30-80cm)

 Tabelle 4-11
 Daten der untersuchten Deponien Falköping und Hökhuvud (Börjesson et al., 2001)

Gegen Ende der Betriebsdauer wurden auf der Deponie Falköping ca. 18.000 t/a deponiert. Anfang der 90er Jahre wurde ein aktives Entgasungssystem installiert mit welchem 1997 im Durchschnitt 14 m³ CH₄/h erfasst wurden (Börjesson et al., 2000). Die Deponie Hökhuvud dagegen verfügt über kein Entgasungssystem.

Die Ergebnisse der Emissionsmessungen mittels Gasbox auf den beiden Deponien sind in Tabelle 4-12 zusammengestellt.

Tabelle 4-12Methanemissionen Deponie Falköping (Börjesson et al., 2000 und Börjesson et al.,
2001)

		Anzahl der Auf-	Diff	Diffuse Methanemissionen			
Deponie	Messzeit- punkt	stell- punkte	[g Cl	H4/(m ² h)]	[Nm ³ CH4/h]		
	_	[-]	Messbereich	Mittelwert ± Standardabw.	Diffuse Emissionen	erfasstes Methan	
	06/05/1997	81	-0,007 - 40,7	1,78 ± 6,86	36,3	15,6	
	02/07/1997	101	-0,014 - 8,21	0,35 ± 1,20	6,0	9,1	
	20/08/1997	26	-0,001 - 29,6	$0,02 \pm 0,056^{\#} \ 12,0 \pm 14,0*$	-	-	
Falköping	21/10/1997	83	-0,015 - 15,9	0,59 ± 2,03	13,5	17,9	
	24/02/1998	16	0-0,002	$0^{\#}$ 0,0003 \pm 0,0009*	-	-	
	03/03/1998	4	0,0008 - 12,9	_# 7,7 ± 5,1*	-	-	
	19/08/1997 22/08/1997	23	-0,0001 - 0,25	$0,0004 \pm 0,001^{\#} \ 0,04 \pm 0,08*$	-	-	
Hökhuvud	26/01/1998	16	-0,0007 - 11,3	<i>1,6 ± 3,9[#]</i> -0,0001 ± 0,0005*	-	-	
	06/03/1998	6	0,003 - 0,17	0,072 ±0,07 [#] _*	_	_	

*# im Plateaubereich, * im Böschungsbereich*

Die gemessenen Methanemissionen bewegen sich im Bereich von -0,015 bis 40,7 g $CH_4/(m^2h)$. Die teilweise "negativen" Emissionen wurden von Börjesson et al. (2000) auf Methanoxidation in der Abdeckschicht zurückgeführt.

Der hohe Streubereich der Messwerte zeigt deutlich die "räumliche Heterogenität" der Deponiegasemissionen auf. Bei einer geringen Anzahl von Messpunkten ist es daher problematisch eine Hochrechnung von "punktförmigen" Messungen (Gasboxen) auf die Methanemissionen der gesamten Deponieoberfläche zu machen. Die in Tabelle 4-12 angegebenen Gesamtemissionen wurden über lineare Interpolation zwischen den Messpunkten errechnet. Die

Verwendung einer anderen Interpolations-Methode führt zu einem unterschiedlichen Ergebnis. So wurde mit Hilfe des Kriging-Verfahrens (geostatistisches Verfahren, das annimmt, dass räumlich nahe stehende Messpunkte eine ähnliches Ergebnis besitzen) eine Gesamtemission der Deponie Falköping von 3,2 m³ CH₄/h für den Mai 1997 errechnet. Im Vergleich dazu liefert die lineare Interpolation einen um mehr als den Faktor 10 höheren Wert von 36,3 m³ CH₄/h.

Die Ergebnisse der Tracergas-Emissionsmessungen an der Deponie Falköping sind unter Abschnitt 4.1.2 angeführt.

Methanemissionsmessungen mittels Gasboxen wurden auch an der Deponie Martin's Farm in Großbritannien durchgeführt (Jones et al., 1990). Die Deponie war zum Messzeitpunkt bereits geschlossenen und mit einer 50 cm dicken Lehmschicht abgedeckt. Über die abgelagerte Müllmasse liegen keine Angaben vor. Die Messungen wurden an nur drei Kammeraufstellpunkte durchgeführt. Interessant dabei ist die Tatsache, dass über ein Jahr dieselben Messpunkte beprobt wurden. Der gemessene Methanaustritt lag in einem Bereich von 0 bis 0,131 g $CH_4/(m^2h)$. In Abbildung 4-2 ist der Verlauf der Messwerte dargestellt. Es ist deutlich ersichtlich, dass die Emissionswerte erheblichen zeitlichen Schwankungen unterliegen. So wurde in Punkt 1 ein maximaler und minimaler Methanaustritt von 9,36 bzw. 0 g $CH_4/(m^2h)$

Eine Messung kann daher nur eine Aussage über den aktuellen (zum Messzeitpunkt vorherrschenden klimatischen Bedingungen) Emissionszustand liefern, nicht jedoch über die mittleren Emissionen über eine längere Zeitperiode.

Abbildung 4-2 Methanemissionen der Deponie Martin's Farm (Jones et al., 1990)

Emissionsmessungen mittels Gasboxen wurden ebenfalls von Taramini et al. (2003) an zwei französischen Deponien durchgeführt. Die Messungen erstreckten sich über einen Zeitraum von vier Tagen (im Juni bzw. Juli 2002).

Deponie	Deponie- fläche [ha]	Ablagerungs- zeitraum	deponierte Abfallmenge [t]	Abgelagerte Abfälle	Oberflächen- abdeckung
Deponie_F1	1,9	1996 -	300.000	Hausmüll, Industriemüll	Mineralische Dichtung (50 cm)
Deponie_F2	12	1976 -	2.080.000	Hausmüll	Boden bzw. Kombinations- dichtung

Tabelle 4-13Daten der untersuchten Deponien F1 und F2 (Taramini et al., 2003)

Information zur ersten Deponie: Dort wurden seit 1996 insgesamt 300.000 t Müll (nicht gefährliche Industrieabfälle und Hausmüll) abgelagert. Die Deponie verfügt über ein aktives Entgasungssystem. Die Oberflächenabdeckung besteht aus einer mineralischen Dichtung von 0,5 m. Mit Hilfe der 189 Messpunkte (1 Punkt repräsentiert eine Fläche von 100 m²) wurde unter Verwendung linearer Interpolation eine mittlere Emissionsrate von 0,11 g CH₄/(m²h) (entspricht gesamt 180 Nm³ CH₄/h) errechnet. Der Grossteil der Messwerte lag dabei unter 0,007 g CH₄/(m²h). Die größten Emissionen traten im Böschungsbereich der Deponie auf. Auf der zweiten untersuchten Deponie wurde seit 1976 jährlich 80.000 t Hausmüll deponiert. Der Aufbau der Oberflächenabdeckung variiert. Es kamen sowohl Kombinationsdichtung (Kunststoffdichtungsbahnen und mineralische Dichtung) als auch reine Bodenabdeckungen zur Anwendung. Die Dichte der Messpunkte (insgesamt 473 Messpunkte) wurde an die lokal gemessene Emissionsrate angepasst. Im Bereich hoher Emissionen wurde das Aufstellraster verdichtet (bis zu 5 m), während in Bereichen mit geringem Methanaustritt der Abstand zwischen den Gasboxen auf bis zu 20 m erhöht wurde. Die mittlere Emissionsrate über die gesamte Deponieoberfläche wurde von den Autoren mit 0,013 g CH₄/(m²h) errechnet, wobei auf Flächen mit Kombinationsdichtung ein mittlerer Gasaustritt von kleiner 0,0004 g CH₄/(m²h) gemessen wurde. Während sich hingegen für andere Bereiche (frisch geschütteter Abfallkörper mit temporärer Bodenabdeckung) ein Mittelwert von 0,17 g CH₄/(m²h) errechnen lässt. Es zeigt sich somit, dass der Gasaustritt im Bereich der Kombinationsabdichtung (sofern keine Fehlstellen vorhanden sind) nahezu vollständig unterbunden werden kann.

Eine Deponie auf der zu vergleichenden Zwecken mehrere Messmethoden zur Erfassung der Methanemissionen angewandt wurden, ist die Deponie Rochy-Conde in Frankreich. Tregoures et al. (1999) führten dort sowohl Messungen mittels Gasboxen, mittels Tracergas-Methode und auch mit Hilfe der Bilanz-Methode durch. Am untersuchten Standort wurde zwischen 1988 und 1995 (keine Ablagerungen von 1991 bis 1993) überwiegend Hausmüll (80%) deponiert, der mit einer 1,2 m dicken Bodenschicht abgedeckt wurde. Die mittlere Schütthöhe der Deponie beträgt 9,5 m bei einer gesamten Ausdehnung ca. 9 ha. Dies entspricht einem Ablagerungsvolumen von 850.000 m³. Die Anlage verfügt über kein Entgasungssystem.

Die Emissionsmessungen wurden im Juli 1996 durchgeführt. Für die Gasboxenmessungen kamen sowohl statische als auch dynamische Messkammern zur Anwendung. Das Aufstellungsraster variierte zwischen 10 und 20 m. Insgesamt wurden drei Messkampagnen mit Gaskammern durchgeführt. Die Ergebnisse sind in Tabelle 4-14 zusammengefasst.

Messmethode	"Messfläche"	Anzahl der Messungen bzw. Mess-	Diffuse Methanemissionen		
	[ha]	punkte	$[Nm^3 CH_4/h]$	$[g CH_{4}/(m^{2}h)]$	
Gasbox (dynamisch)	8,4	480	474	4,04	
Gasbox (dynamisch)	8,4	260	438	3,74	
Gasbox (statisch)	7,3 – 9,6	240	156 – 592	1,55 – 4,43	
Tracergas- Methode	8	1	322±110*	2,88±0,99	
Tracergas- Methode	8	3	264±86*	2,37±0,77	
Bilanzmethode	0,9-1,6	kontinuierlich	14±4 [#]	1,03±0,34 [#]	

Tabelle 4-14	Emissionsmessungen	auf der Deponie	Rochy-Conde (F)	(Tregoures et al., 1999	9)
			2 1 1	1 0	

* 95% Konfidenzintervall, [#] nur Teilfläche

Es zeigt sich, dass die einzelnen Methoden zu einem sehr ähnlichen Ergebnis kommen. Einzig jener Emissionswert der mit Hilfe der Bilanzmethode ermittelt wurde, zeigt einen größeren Unterschied zu den anderen Messwerten. Die Begründung liegt darin, dass nur eine Teilfläche der Deponie bei der Messung erfasst wurde. Tregoures et al. (1999) geben an, dass die Methanemissionsrate dieser Teilfläche bestimmt über Ergebnisse der Gasboxmessungen gut mit dem Resultat der Bilanzmethode übereinstimmt.

Im Rahmen eines niederländischen Methanemissionsmessprogramms wurden auf der Deponie Braambergen neben Messungen mittels Tracergas-Methode und Bilanz-Methode auch Kammermessungen durchgeführt (Scharff et al., 2001). Die Deponie Braambergen ist seit 1982 in Betrieb und wurde überwiegend mit Hausmüll bzw. hausmüllähnlichen Gewerbeabfällen befüllt. Die abgelagerte Müllmasse lag zum Messzeitpunkt (November 2000) bei rund 2.000.000 m³. Die Deponiefläche beträgt 30 ha, wobei der Grossteil mit einer Kunststoffdichtungsbahn und Bodenschicht abgedeckt ist. Die Gasboxmessungen wurden auf einer nicht abgedichteten Böschungsfläche von 2 ha durchgeführt. Es liegen keine Angaben zu Einzelmessung vor. Die mittels Gasboxen ermittelten Emissionen der Teilfäche werden von Scharff et al. (2001) mit 224±100 m³ CH₄/h (95% Konfidenzintervall) angegeben. Dies entspricht auf die Messfläche bezogen einem mittleren Methanaustritt von 8,03±3,59 g CH4/(m²h). Vergleichsmessungen mittels Tracergas-Methode und Bilanz-Methode kommen für die Teilfläche ohne Abdichtung zu einem ähnlichen Ergebnis wie die Gasboxmessungen (siehe Tabelle 4-15). Eine zum selben Zeitpunkt die gesamte Deponieoberfläche erfassende Messung mittels Tracergas-Methode, zeigt, dass nahezu 70 % der gesamten Methanemissionen von der nicht abgedichteten Fläche (<10% der Gesamtfläche) erfolgen. Die Gesamtemisssionen liegen bei 240 Nm³ CH₄/h. Die abgesaugte Methanmenge liegt im November 2000 bei 110 m³ CH4/h, d.h. der für den Messzeitpunkt aktuelle Erfassungsgrad beträgt somit rund 33 %.

Messzeit- Mess-		Anzahl der Aufstellpunkte	"Mess- fläche"	Diffuse Meth	aktiv erfasstes Methan	
punkt	methode	bzw. Messungen	[ha]	[g CH4/(m ² h)]	[Nm ³ CH4/h]	[Nm ³ CH ₄ /h]
11/1999	Tracergas	-	30	0,57±0,10	240±40	110
11/2000	Boxen	38 (2×)	2,0	8,03±3,59*	224 <i>±</i> 100*	245
11/2000	Bilanz	369	5,5	2,41±0,29*	185±9*	245
11/2000	Tracergas	8	7,0	1,64±0,16*	160±16*	245
11/2000	Tracergas	-	30	0,57±0,06	240±24	245

Tabelle 4-15Emissionsmessungen auf der Deponie Braambergen (NL) (Scharff et al., 2001)

* Emissionen von einer Teilfläche der Deponie ohne Oberflächenabdichtung

4.1.2 Messungen mittels Tracergas-Methode

Ergebnisse aus Methanemissionsmessungen mittels Tracergas Methode gelten als am Zuverlässigsten. Aufgrund des hohen Geräteaufwandes gibt es derzeit nur vereinzelt Ergebnisse von Messungen an Deponien, die vor allem in den USA, Schweden und den Niederlanden durchgeführt wurden.

Eine Deponie, an der ein intensives Emissionsmessprogramm mit Hilfe der Tracergas-Methode durchgeführt wurde, ist die Deponie Nashua in den USA. Die Beschreibung dieser Anlage ist Tabelle 4-9 zu entnehmen. 1995 wurde die Deponie (ausgenommen Schüttbereich) mit einer 1 bis 2 m dicken Lehmschicht abgedeckt und mit einem aktiven Entgasungssystem ausgestattet. Die Ergebnisse der Methanemissionsmessungen sind in Tabelle 4-16 zusammenstellt. Die Tageswerte wurden aus Mittelwerten von mehreren Messungen ermittelt, es sind daher zusätzlich die Standardabweichungen angegeben.

	Magazzitzuntz	Diffuse Meth	anemissionen	aktiv erfasstes Methan	Luftdruck
	Messzeitpunkt	[g CH4/(m ² h)]	[Nm ³ CH4/h]	Mittelwert* [Nm ³ CH4/h]	[mbar]
gu	07/10/94	<i>3,07 ± 0,34</i>	1.070 ± 118	-	1020
gasui	12/10/94	<i>1,91 ± 0,46</i>	665 ± 160	-	1028
Ent	21/10/94	2,40 ±0,29	835 ± 100	-	1025
ohne	06/11/94	3,71 ±0,33	1.295 ± 117	-	1011
	12/11/94	2,60 ± 0,29	907 ± 100	-	1024
	22/08/96	1,36 ±0,14	475 ± 48	807	1019
	24/08/96	<i>1,26 ± 0,18</i>	439 ± 61	807	1020
	27/08/96	<i>1,28 ± 0,09</i>	446 ± 31	807	1021
ng	25/02/97	2,34 ±0,28	815 ± 98	807	1016
tgasu	27/02/97	1,99 ±0,30	695 ± 104	807	1018
r Ent	01/03/97	2,94 ±0,29	1.026 ± 103	807	1012
ktive	04/03/97	3,61 ±0,33	1.258 ± 113	807	1010
nit al	15/04/97	3,78 ± 0,42	1.316 ± 145	807	1008
1	17/04/97	<i>4,57 ± 0,44</i>	1.593 ± 143	807	1007
	19/04/97	<i>1,33 ± 0,23</i>	465 ± 79	807	1023
	22/04/97	2,19 ±0,39	762 ± 137	807	1017
	24/04/97	2,24 ±0,09	782 ± 31	807	1015

Tabelle 4-16Emissionsmessungen auf der Deponie Nashua (USA) mittels Tracergas Methode
(Czepiel et al., 2000)

* Mittelwert aus Deponiegasjahresproduktion berechnet

Es zeigt sich, dass die Emissionen sehr starken zeitlichen Schwankungen unterworfen sind. Aus Abbildung 4-3 lässt sich eine klare Abhängigkeit der Emissionsraten vom Luftdruck erkennen. Mit zunehmendem atmosphärischem Luftdruck nehmen die Methanemissionen ab. Emissionsmessungen sollten daher um zuverlässige Aussagen treffen zu können bei unterschiedlichen Luftdruckverhältnissen durchgeführt werden. Czepiel et al. (2000) berechneten mit Hilfe einer Häufigkeitsverteilung des Luftdruckes am Standort und der in Abbildung 4-3 dargestellten Abhängigkeit eine mittlere Methanemission pro Jahr. Für die Deponie Nashua ergibt sich auf diese Weise eine mittlere Emissionsrate von 1.153 Nm³ CH₄/h für das Jahr 1994 (ohne aktive Entgasung) und 868 Nm³ CH₄/h für 1997 (bei einer aktiven Entgasung von 807 Nm³ CH₄/h). Dies bedeutet, dass die Methanproduktion unter Vernachlässigung eventueller Methanoxidation (liegt für diese Deponie im Bereich von 12% - Chanton et al., 1999) um rund 40 % zugenommen hat nach Installation des Entgasungssystems.

Ein Vergleich der Messergebnisse mit jenen durchgeführt mit Gasboxen zeigt, dass die Gasboxenmessungen (siehe Tabelle 4-10) mit einem Ergebnis von 962 Nm³ CH₄/h im Schwan-

kungsbereich der Tracergas Messergebnisse liegen. Dazu muss allerdings angemerkt werden, dass keine Angaben über die Luftdruckverhältnisse (die die Emissionsrate stark beeinflussen) zum Gasboxmesszeitpunkt vorliegen, die tatsächliche Übereinstimmung beider Messmethoden daher nicht genau bewertet werden kann.

Abbildung 4-3 Abhängigkeit der Methanemissionsrate vom Luftdruck (Czepiel et al., 1999)

Eine Zusammenstellung von Methanemissionsmessungen mittels Tracergas-Methode an Deponien in den USA wurde von Mosher et al. (1999) publiziert. Die Daten der dabei untersuchten Deponien (Müllmenge, Betriebsdauer, Oberflächenabdeckung) sind Tabelle 4-9 zu entnehmen. Die Messungen wurden zumeist über zwei Tage durchgeführt.

Deponie	Mess- zeitpunkt	Mess- dauer	Mess- dauer Diffuse Methanemissionen		aktiv erfasstes Methan Mittelwert
	I	[d]	$[g CH_{4}/(m^{2}h)]$	[Nm ³ CH ₄ /h]	[Nm³/h]
londfill A	1994	4	5,44 ± 0,90	1.746 ± 288	0*
landiiii-A	1995	1	5,48 ± 1,19	1.758 ± 384	0.
Londfill B	1994	2	3,79 ±0,49	1.806 ± 234	1 600
Lanum-D	1995	1	<i>3,75 ± 1,27</i>	1.788 ± 606	1.000
Londfill C	1994	2	2,13 ± 1,59	528 ± 396	010
Landfill-C	1995	2	0,94 ±0,12	234 ± 29	910
Landfill-D	1994	2	<i>1,94 ± 0,45</i>	1.260 ± 294	1.850

Tabelle 4-17Ergebnisse von Emissionsmessungen mittels Tracergas Methode (Mosher et al., 1999)

* während Messung außer Betrieb

Die spezifischen Emissionsraten bewegen sich für die untersuchten Deponien im Bereich von 2,0 bis 5.5 g $CH_4/(m^2h)$, wobei die Standardabweichung der Messdaten teils erheblich ist. Inwieweit diese Messwertschwankungen auf Änderungen des Luftdruckes während der Mes-

sungen zurückzuführen sind, lässt sich nicht beurteilen, da keine Aufzeichnungen über Luftdruckverhältnisse vorliegen. Ein Vergleich der Ergebnisse der Boxenmessungen mit den Messungen mittels Tracergas Methode zeigt für landfill-A eine sehr gute Übereinstimmung (1.710 zu 1.758±384 Nm³ CH₄/h) der beiden Methoden.

Die Tracergas Methode wurde auch von Scharff et al. (2001) angewandt um die Methanemissionen von verschiedenen Deponien in den Niederlanden zu quantifizieren. Es wurden dabei die Deponien Braambergen, Hollandse Brug und Nauerna untersucht. Die Messergebnisse der Deponie Braambergen sind bereits in Tabelle 4-15 angeführt. An diesem Standort erfolgte ein Vergleich verschiedener Messmethoden, während an den anderen Deponien nur die Tracergas-Methode zur Anwendung kam.

Tabelle 4-18Zusammenstellung der untersuchten Deponien in den Niederlanden
(Scharff et al., 2001)

Deponie	Deponie- fläche [ha]	Deponierte Abfallmenge [m ³]	Ablagerungs- zeitraum	Abgelagerte Abfälle	Oberflächen- abdeckung (% der Gesamtfläche)
Braambergen	30	2.000.000	1982-	Hausmüll und Gewerbemüll	Kunststoffdichtung+B odenschicht (~90%)
Hollandse Brug	15	1.300.000	1970-2000	Hausmüll und Gewerbemüll	Bodenschicht
Nauerna	72	4.500.000	1985-	Gewerbemüll, Industrieabfälle und kontaminiertes Erdreich	Bodenschicht

Tabelle 4-19Emissionswerte der untersuchten Deponien in den Niederlanden (Scharff et al., 2001)

Deponie	Mess-	Diffuse Metha	aktiv erfasstes Methan	
*	zeitpunkt	[g CH4/(m ² h)]*	[m ³ CH4/h]*	[m ³ CH4/h]
	11/1999	0,57 ± 0,10	240 ± 40	110
Braambergen	11/2000	$1,64 \pm 0,16^{\#}$	$160\pm16^{\#}$	245
	11/2000	0,57 ± 0,057	240 ± 24	245
Hollandse Brug	04/1997	0,29 ± 0,12	60 ± 25	0
	04/1997	<i>0,31 ± 0,06</i>	310 ± 60	0
Nouerne	04/1998	0,154 ± 0,07	155 ± 65	100
Nauerna	11/1999	0,52 ± 0,15	520 ± 150	50
	04/2000	0,27 ± 0,07	270 ± 70	80

* 95% Konfidenzintervall,[#] Emissionen von nicht abgedichteter Teilfläche der Deponie (25 % der Gesamtfläche)

Analog zu den Untersuchungen von Czepiel et al. (2000) zeigt sich auch hier, dass die Emissionswerte hohen zeitlichen Schwankungen (siehe Deponie Nauerna) unterliegen. Einzelmes-

sungen, daher selbst wenn sie mit sehr zuverlässigen Methoden durchgeführt werden, nur beschränkte Aussagekraft haben.

Auf der Deponie Falköping wurden neben den bereits beschriebenen Gasboxenmessungen auch Methanemissionsmessungen mittels Tracergas-Methode (Galle et al., 2001) durchgeführt. Die Abmessungen der Deponie sind in Tabelle 4-11 angeführt. Die Messungen wurden von April 1988 bis Juni 1999 alle zwei Monate durchgeführt. Es wurde dabei über eine Periode von ein bis vier Tagen gemessen. Aus den Ergebnissen (siehe Tabelle 4-20) errechnet sich eine mittlere Emissionsrate von 55 Nm³ CH4/h. Bezogen auf eine Emissionsfläche von 3 ha ergibt diese eine spezifische Methanaustrittsrate von rund 1,3 g CH4/(m²h). Die 1997 mittels Gasboxen ermittelten Methanemissionen (Mittelwert 19 Nm³ CH4/h) liegen etwas unter den hier ermittelten Werten.

Messzeitpunkt		Diffuse Metha	aktiv erfasstes Methan	
	T	[g CH4/(m²h)]	[Nm ³ CH4/h]	[Nm ³ CH4/h]
	1.Tag	1,40 ± 0,33	59 ± 14	17
05/1998	2.Tag	1,17 ±0,35	49 ± 15	13
	3.Tag	<i>1,13 ±0,15</i>	47 ± 6	13
	1.Tag	1,10 ± 0,33	46 ± 14	13
07/1008	2.Tag	<i>1,33 ± 0,30</i>	56 ± 13	13
07/1998	3.Tag	<i>1,57 ± 0,28</i>	66 ± 12	8
	4.Tag	<i>1,40 ± 0,27</i>	59 ± 11	13
00/1008	1.Tag	1,50 ± 0,50	63 ± 21	13
09/1998	2.Tag	0,67 ± 0,10	28 ± 4	49
	1.Tag	0,87 ± 0,13	36 ± 6	56
12/1998	2.Tag	<i>1,73 ± 0,33</i>	73 ± 14	47
	3.Tag	<i>1,33 ± 0,27</i>	56 ± 11	_*
02/1000	1.Tag	<i>1,40 ± 0,47</i>	59 ± 20	_*
02/1999	2.Tag	1,17 ± 0,22	49 ± 9	_*
05/1999	1.Tag	1,87±0,37	78 ± 15	13

Tabelle 4-20	Emissionswerte de	r Deponie	Falköping	(S) (Galle	et al., 2001))
--------------	-------------------	-----------	-----------	------------	---------------	---

* Messausfall

Abbildung 4- zeitlicher Verlauf der diffus emittierten und gefassten Methanmenge an der Deponie Falköping (Galle et al., 2001)

Auch hier zeigt sich, dass die Methanemissionen starken zeitlichen Schwankungen unterliegen. Inwieweit diese auf Änderungen des Luftdruckes zurückzuführen sind, lässt sich aufgrund fehlender meteorologischer Aufzeichnungen nicht beurteilen. Interessant ist die Tatsache, dass neben den Emissionen auch die gefassten Methanmengen mit der Zeit erheblich variieren. Der mittlere Erfassungsgrad des Deponiegases liegt während der Messperiode (1998/99) bei knapp 30 %.

Methanemissionsmessungen mittels Tracergas-Methode wurden in Schweden noch an vier weiteren Deponien (Filborna, Hagby, Häljestorp, Härlövs Ängar) durchgeführt (Samuelsson et al., 2001).

Denenia	Größe	Deponierte [Abfallmenge t]	Ablagerungs-	Oberflächen-	
Deponie	[ha]	gesamt	Hausmüll (1996 -2000)	zeitraum	abdeckung	
Filborna	38	8.300.000	297.000	1970-	Lehmschicht	
Hagby	20	2.000.000	0	1968-1995	Lehmschicht	
Häljestorp	20	600.000	170.000	1975-	Lehmschicht	
Härlövs Ängar	35	2.300.000	85.000	1959-	Lehmschicht	

 Tabelle 4-21
 Zusammenstellung der untersuchten Deponien in Schweden (Samuelsson et al., 2001)

Das Messprogramm wurde im März und April 2001 durchgeführt, wobei jeweils meist nur an einem oder zwei Tagen gemessen wurde. Die Ergebnisse dieser Messungen, die aufgrund der kurzen Zeitperiode wiederum bestenfalls einen größenmäßigen Anhaltspunkt über die mittleren Emissionen geben können, sind in Tabelle 4-22 zusammengestellt.

Deponie	Diffuse Meth	aktiv erfasstes Methan	
1	$[g CH_4/(m^2h)]$	$[Nm^3 CH_4/h]$	[Nm ³ CH ₄ /h]
Filborna	0,81	430	976
Hagby	0,25	68	216
Häljestorp	0,68	190	102
Härlövs Ängar	0,13	63	163

Tabelle 4-22	Emissionswerte	der schwedischer	· Deponien	(Samuelsson et a	<i>l.</i> , 2001)
			1	1	/ /

Unter Verwendung der gemessenen Emissionsraten errechnet sich für die Deponien Filborna, Hagby und Härlövs Ängar ein mittlerer Deponiegasfassungsgrad von rund 70 %. Die im Vergleich dazu niedrige Fassungsrate von 35 % auf der Deponie Häljestorp wird von Samuellson et al. (2001) damit erklärt, dass zum Messzeitpunkt ein Teil der Entgasungsanlage außer Betrieb war.

4.1.3 Messungen mittels Bilanz-Methode

In der Literatur sind nur wenige Emissionsmessungen mittels Bilanz-Methode dokumentiert. Bisher wurde diese Methode vor allem in den Niederlanden zur Quantifizierung der Methanemissionen von Deponien angewandt.

Eine größere Messkampagne unter Anwendung der Bilanzmethode wurde in den Jahren 1993 und 1994 an 21 Deponien in den Niederlanden durchgeführt (Oonk und Boom, 1995). In Tabelle 4-23 sind die Ergebnisse dieser Messungen zusammengestellt. Es gibt für die Messungen allerdings keine Angaben über die Dauer der Messperiode.

Deponie- bez.	Ablagerungs- dauer	Müllmenge	Fläche	Ab- deckung	Diffuse Methanemissionen		aktiv erfasstes Methan*
		[t]	[ha]		$[g CH_4/(m^2h)]$	[Nm ³	CH ₄ /h]
NL-1	1990-	280.000	4	Boden	3,61	201	32
NL-2	1989-	1.000.000	11	Boden	2,58	396	243
NL-3	1988-	630.000	5	Boden	2,40	168	-
NL-4	1987-	166.000	2	Boden	-	-	-
NL-5	1985-	7.000.000	20	Boden	4,08	1.138	
NL-6	1985-	7.000.000	20	Boden	1,65	460	594
NL-7	1970-	1.730.000	9	Boden	11,13	1.397	-
NL-8	1969-	7.880.000	26	Boden	3,45	1.251	-
NL-9	1976-1988	477.000	9	Boden	0,75	94	55
NL-10	1987-1993	480.000	7	Boden	1,52	148	-
NL-11	1988-1993	1.760.000	27	Boden	0,57	213	83
NL-12	1986-1991	1.000.000	14	Boden	n.b.	n.b.	3
NL-13	1987-1990	460.000	2	Boden	2,20	61	69
NL-14	1981-1989	390.000	8	Boden	1,41	157	58
NL-15	1985-1988	850.000	12	Boden	0,25	42	165
NL-16	1965-1988	450.000	6	Boden	0,49	41	30
NL-17	1974-1988	380.000	4	Boden	0,16	9	-
NL-18	1978-1984	1.500.000	11	Boden	0,30	46	11
NL-19	1972-1980	230.000	6	Boden	0,90	75	9
NL-20	1970-1986	2.320.000	30	mineral. Dichtung	0,050	21	319
NL-21	1974-1988	830.000	8	HDPE- Folie	n.b.	n.b.	94

Tabelle 4-23Emissionsmessungen mittels Bilanzmethode an Deponien in den Niederlanden (Oonk
und Boom, 1995)

n.b. nicht bestimmbar

* Annahme des Methangehaltes im abgesaugten Deponiegas 55 %.

Die spezifischen Methanemissionen variieren von <0,01 g CH₄/(m²h) (geschlossene Deponie mit aktiver Entgasung und oberflächlicher Abdichtung - Kunststoffdichtungsbahn) bis 11,0 g CH₄/(m²h) (Deponie in der Betriebsphase ohne Gasfassung mit Bodenabdeckung). Tendenziell zeigen in der Betriebsphase befindliche Deponien höhere Emissionswerte als jene die bereits geschlossenen wurden. Das kann einerseits auf die durchschnittlich längere Ablagerungsdauer des Abfalls und andererseits auf die vollständige Abdeckung der geschlossenen Deponien zurückgeführt werden.

Besser dokumentiert sind die Messungen auf der Deponie Zeeasterweg in den Niederlanden (Scharff et al., 2001). Die Deponie war von 1980 bis 1995 in Betrieb. Es wurden insgesamt

1.500.000 m³ Hausmüll und hausmüllähnliche Abfälle abgelagert. Die Deponieoberfläche beträgt rund 35 ha. Das Deponiegas wird auf dieser Anlage nicht gefasst.

Die Emissionsmessungen wurden im Dezember 1999 durchgeführt. Die ermittelte Methanemission liegt bei 35 ± 5 Nm³ CH₄/h, das entspricht einer spezifischen Austrittsrate von 0,072 g CH₄/(m²h). Scharff et al. (2001) führen diese verhältnismäßig niedrige Emissionsrate auf Methanoxidation in der Oberflächenabdeckung zurück, wobei dazu allerdings keine Messungen angestellt wurden.

4.1.4 Messungen mittels Isotopen Methode

Mit Hilfe dieser Methode lässt sich die Methanoxidation in der Oberflächenabdeckung der Deponie quantifizieren. Aussagen über die Emissionsrate können damit allerdings nicht gemacht werden.

Messungen mit dieser Methode wurden von Chanton et al. (1999) an den Deponien Nashua und "Landfill-A" (Beschreibung dieser Anlagen siehe Tabelle 4-9) durchgeführt. Die Deponie Nashua ist mit einer 1 - 2 m mächtigen Lehmschicht abgedeckt. Die Deponie "Landfill-A" besitzt dieselbe Abdeckung, zusätzlich sind an diesem Standort 40% der Deponieoberfläche mit einer Kunststoffdichtungsbahn abgedichtet. In Tabelle 4-24 sind die Ergebnisse der Oxidationsmessungen zusammengestellt. Die Oxidationsrate wurde über den Vergleich der Isotopenkonzentration C-13 im Methan des abgesaugten Deponiegases und im wind abwärts der Deponien gemessenen Methan der Atmosphäre berechnet.

Deponie	Messzeit- punkt	Boden- temperatur [°C]	spez. Methanemissionsrate [g CH4/(m ² h)]	Methan- oxidation	spez. Methanoxidation [g CH4/(m ² h)]
	22/08/1996	22	1,36	$12,5 \pm 0,4$	0,18
	24/08/1996	22	1,26	13,6±0,8	0,20
	25/02/1997	9	2,34	$6,0\pm1,4$	0,15
	27/02/1997	5	1,99	6,6 ± 0,3	0,14
	01/03/1997	4	2,94	$8,0\pm0,6$	0,26
	04/03/1997	3	3,61	$6{,}4\pm0{,}3$	0,25
Nachua	15/04/1997	5	3,78	$6{,}9\pm0{,}3$	0,28
INASIIUA	17/04/1997	6	4,57	0	0
	19/04/1997	4	1,33	$3,7\pm0,5$	0,05
	22/04/1997	5	2,19	$4,7\pm0,3$	0,11
	24/04/1997	6	2,24	0	0
	18/09/1997	20	-	$21,\!6\pm1,\!3$	-
	03/10/1997	15	-	$18,3\pm0,7$	-
	17/10/1997	13	-	$23,6\pm3,7$	-
	21/08/1996	21	-	$10,5\pm0,4$	-
	29/08/1996	20	-	0	-
Landfill-A	26/02/1997	5	-	$14,2 \pm 0,0$	-
	03/03/1997	5	-	0	-
	05/03/1997	3	-	0	-

Tabelle 4-24Oxidationsmessungen an den Deponien Nashua und "Landfill-A" (USA)
(Chanton et al., 1999)

Es zeigt sich eine eindeutige Temperaturabhängigkeit der Methanoxidation (siehe Abbildung 4-4). So variiert auf der Deponie Nashua die Oxidationsrate von 0 % im Winter bis 23,6 % im Sommer. Die jährliche mittlere Methanoxidation liegt bei rund 12 %. Dies bedeutet bei einer mittleren spezifischen Emissionsrate von 2,5 g CH₄/(m²h) eine Oxidationskapazität der Oberflächenabdeckung von 0,34 g CH₄/(m²h).

Auf "Landfill-A" ergeben die Messungen einen Bereich für die Oxidationsrate von 0 bis 14,2 %. Dies bedeutet bei einer mittleren Emissionsrate von 2,80 g CH₄/(m²h) eine spezifische Methanoxidation von 0 bis 0,45 g CH₄/(m²h).

Abbildung 4-4 Methanoxidationsrate in Abhängigkeit der Bodentemperatur (Deponie Nashua)

Isotopenmessungen zur Bestimmung der Methanoxidation wurden auch von Börjesson et el. (2001) an zwei schwedischen Deponien (Falköping und Hökhuvud) durchgeführt. Anders als bei den Messungen von Chanton et al. (1999) wurde hier die C-13 Konzentration des emittierten Methans nicht wind abwärts der Deponie sondern direkt an der Deponieoberfläche in den aufgestellten Gasboxen gemessen.

		Boden-	spez.	Methan-	spez.
Deponie	Messzeitpunkt	temp.	Methanemissionsrate	oxidation	Methanoxidation
		[°C]	$[g CH_{4}/(m^{2}h)]$	[%]	[g CH ₄ /(m ² h)]
	20/08/1007	26.9	$0,018 \pm 0,056^{\#}$	$49\pm24^{\#}$	$0,\!017\pm0,\!054^{\#}$
	20/08/1997	20,8	<i>12,0 ± 14,0*</i>	$41 \pm 5*$	8,34 ± 9,73*
Falltöning	24/02/1009	4.4	$\mathit{O}^{\!\#}$	_#	_#
гакоріпд	24/02/1998	4,4	0,0003 ±0,0009*	23*	0,0001 ± 0,0003*
	03/03/1998	-0,3	_#	_#	_#
			7,73 ± 5,06*	$11 \pm 10^*$	$0,96 \pm 0,63*$
	22/08/1997	24,8	$0,0004 \pm 0,001^{\#}$	$94 \pm 41^{\#}$	$0,005 \pm 0,017^{\#}$
			0,04 ± 0,08*	$60 \pm 27*$	$0,06 \pm 0,12*$
Hökhuvud	26/01/1008	1.4	$1,60 \pm 3,90^{\#}$	$20 \pm 12^{\#}$	$0,\!40 \pm 0,\!98^{\#}$
HOKHUVUU	20/01/1998	1,4	-0,00005 ±0,0005*	_*	-*
	06/02/1008	0.4	$0,072 \pm 0,070^{\#}$	$6 \pm 12^{\#}$	$0,005 \pm 0,004^{\#}$
	00/05/1998	0,4	_*	_*	-*

Tabelle 4-25Oxidationsmessungen an den Deponien Falköping und Hökhuvud (S)
(Börjesson et al., 2001)

im Plateaubereich, * im Böschungsbereich

Wie bereits für die mittels Gasboxen gemessen Emissionswerte ergeben sich auch für die Oxidationsraten hohe Schwankungsbreiten. Die Methanoxidation variiert zwischen 0 und 94 %. Dieses Ergebnis spiegelt vor allem die hohe räumliche und zeitliche Variabilität der

Methanemissionen wider. Die errechneten spezifischen Methanoxidationsraten (0 bis 8,34 g CH4/(m²h)) besitzen aufgrund der hohen Schwankungsbreite nur eine geringe Aussagekraft über die mittlere Oxidationskapazität der Abdeckschichten. Interessant wäre ein Zusammenführen der Ergebnisse von Methanemission und Methanoxidation einzelner Gasboxen. Leider stehen die Messdaten dazu nicht detailliert genug zur Verfügung.

Bergamaschi et al. (1998) führen C13-Isotopenuntersuchungen an vier Deponien in Deutschland und den Niederlanden durch. Die Daten der untersuchten Deponien sind in Tabelle 4-26 zusammengestellt. Alle Deponien verfügen über eine aktive Deponieentgasung und waren zum Zeitpunkt der Messungen (1994-1996) noch in Betrieb.

Deponie	Größe [ha]	Müllmenge [m³]	Ablagerungs- zeitraum	offene Deponiefläche [%]
Deponie1 (D)	15	8.000.000	1965 –	~20
Deponie2 (D)	12		1977 –	~20
Deponie3 (D)	20	2.500.000	1978 –	~30
Deponie4 (NL)	44	2.300.000	1975 –	~10

Tabelle 4-26Untersuchte Deponien in D und NL (Bergamaschi et al., 1998)

Mit Hilfe der Isotopenverhältnisse von C-13 ober- und unterhalb der Deponieoberfläche wurde eine Methanoxidation im Bereich der Oberflächenabdeckung von 70 bis 97 % errechnet. Die sehr hohen Oxidationswerte stehen im Gegensatz zu den Ergebnissen von Chanton et al. (1999). Bei einem Vergleich der beiden Resultate muss allerdings in Betracht gezogen werden, dass Bergamaschi et al. (1998) in ihrer Studie mit einem niedrigern C13-Anreichungsfaktor der methanoxidierenden Bakterien gerechnet haben. Dies führt bei gleicher Anreicherung von Isotopen zu höheren Oxidationsraten. Bei Verwendung des C13-Anreichungsfaktor von Chanton et al. (1999) liegt die Methanoxidationsrate der untersuchten Deponien zwischen 50 und 75 %. Diese Werte liegen trotz Verwendung derselben Parameterwerte deutlich über den Ergebnissen von Chanton et al. (1999).

Bei einem Vergleich der Daten basierend auf relativen Oxidationswerten, können unterschiedlichen Emissionsniveaus allerdings nicht berücksichtigt werden. Korrekterweise sind nur spezifische Methanoxidationsraten vergleichbar.

4.2 Berechnete Methanbildung

Für die folgenden Berechnungen der Methanproduktion wurde das Deponiegasbildungsmodell von Tabasaran-Rettenberger (siehe Tabelle 3-2) herangezogen. Dieses Modell wird sowohl vom Umweltbundesamt für die Erstellung der österreichischen Luftschadstoff-Inventur OLI (UBA, 2003) als auch im Entwurf des ÖWAV-Regelblattes "EPER – Abschätzung von Emissionen in Luft und Wasser. Reststoff- und Massenabfalldeponie" verwendet. Für den Gehalt an abbaubarem organischen Kohlenstoff wurde gemäß Berechnungen des Umweltbundesamtes und Hackl & Mauschitz (1998) für Deponien mit überwiegendem Anteil an Hausmüll bzw. Restmüll ein Mittelwert von 200 kg C/t FS angenommen. Dieser Wert entspricht bei einem Wassergehalt des Restmülls von 30% und einem Anteil des biologisch abbaubaren Kohlenstoffes am gesamten Kohlenstoffgehalt von 0,55 (berechnet nach Brunner et

al., 2001) einem Gesamtkohlenstoffgehalt von 520 g C/kg Abfall, bezogen auf die Trockensubstanz.

Ein Vergleich mit verschiedensten Untersuchungen aus der Literatur (siehe Tabelle 4-27) zeigt, dass dieser Wert (520 g C/kg TS) sehr deutlich über allen anderen Angaben liegt.

Literatur	betrachteter Müll (Land)	Wasser- gehalt [%]	TOC [g/kg TS]	TOC [g/kg FS]
Brunner (1976)	Hausmüll (CH)	30	~360	250
Belevi & Baccini (1989)	Hausmüll (CH)	25*	290	218
Brunner & Mönch (1986)	Hausmüll (CH)	17	270 ± 50	224 ± 42
Wiemer (1998)	Restmüll (D)	25*	270	203
Scheepers & Van Zanten (1994, zitiert in Oonk & Boom, 1995)	Restmüll (NL)	-	136#	
Reimann (1992, zitiert in Reimann & Hämmerli 1995)	Hausmüll (CH)	15 – 35	280 - 400	210 - 300
Schweiz (1985, zitiert in Reimann & Hämmerli, 1995)	Hausmüll (CH)	12 - 22	300 - 400	249 - 330
Fehringer et al. (1997)	Restmüll (A)	30	360	260
Schocharmayor at al. (1004)	Restmüll (A)	30	240 (180 - 330)	168 (126 – 231)
Schachennayer et al. (1994)	Systemmüll (A)	27	260 (220 - 300)	190 (131 – 241)
Morf et al.(2003)	Restmüll(2000) (A) Restmüll(2001) (A) Restmüll(2002) (A)	~22	250 ± 27 254 ± 13 236 ± 13	195 ± 21 198 ± 10 184 ± 10
Skutan & Brunner (2003)	Restmüll (A)	37,5	340	212
Hackl & Mauschitz (1998)	Restmüll (A)	20 - 25	440 - 550	350 - 410

 Tabelle 4-27
 organische Kohlenstoffgesamtgehalte (TOC) von Rest- bzw. Hausmüll

* Wert angenommen, [#] abbaubarer Anteil

Die Kohlenstoffgehalte für Haus- bzw. Restmüll schwanken je nach Literaturquelle zwischen 130 und 330 g C/kg FS, wobei der überwiegende Teil der Werte sich im Bereich von 190 bis 260 g C/kg FS bewegt.

Berechnungen (nach Brunner et al., 2000) über die Müllzusammensetzung zeigen, dass der Kohlenstoffanteil biogenen Ursprungs am gesamten TOC bei rund 55 % liegt. Unter der Annahme, dass nur biogene Kohlenstoffverbindungen mittelfristig (100 Jahre) abbaubar sind, ergibt sich unter Verwendung der zitierten Literaturwerte ein abbaubarer Kohlenstoffgehalt von 105 bis 143 g C/kg FS. Dabei wird vernachlässigt, dass Ligninverbindungen unter anaeroben Deponiebedingungen nicht abbaubar sind.

Trotz geringerer Kohlenstoffgehalte laut verschiedensten Literaturangaben werden die Berechnungen mit einem abbaubaren Kohlenstoffgehalt von 200 g/kg FS durchgeführt um keinen Widerspruch zur bestehenden österreichischen Praxis (UBA, 2003; Hackl & Mauschitz, 1998) herzustellen.

Die mathematische Ermittlung der Methanbildung wurde an jenen Deponien durchgeführt, an denen ausreichende Information über die abgelagerten Abfälle und den Deponiebetrieb vor-

handen sind. Bei fehlender Information über die jährlich deponierten Abfallmassen wurde eine konstante Ablagerungsmenge über die Betriebsdauer der Deponie angenommen.

Folgende Parameterwerte wurden in Anlehnung an die Erstellung des österreichischen Luftschadstoffinventars (UBA, 2003) verwendet, wobei vereinfachender Weise ein über die Zeit konstanter Gehalt an abbaubarem Kohlenstoff angenommen wurde:

Methode	biol. abbaubarer Kohlenstoffgehalt TOC _{abb} [g/kg FS]	Temperatur T [°C]	Abbaurate k [a ⁻¹]
Tabasaran-Rettenberger (1987)	200	30	0,035

Tabelle 4-28verwendete Parameterwerte für die Modellrechnungen

Für die Berechnungen wurden die über die gesamte Betriebsdauer der Deponie abgelagerten Abfälle berücksichtigt. Der Anteil des Methans am produzierten Deponiegas wurde mit 55 % angenommen.

Eine angesetzte Temperatur von 30°C bedeutet bei Verwendung des Tabasaran-Rettenberger Formel, dass nur 70% der biologischen abbaubaren Kohlenstoffverbindungen zu Methan und Kohlendioxid mineralisiert werden. Der tatsächliche biologisch abbaubare Kohlenstoffgehalt reduziert sich damit von 200 auf 140 g/kg FS.

Im Folgenden sind die Methanproduktionsberechnungen der beiden österreichischen Deponien (Asten, Redlham) exemplarisch angeführt. Die Rechenergebnisse der restlichen Deponien sind Anhang 8.1 zu entnehmen.

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoff- gehalt [kg C/t FS]	Deponiegas- Produktion [Nm ³ /a]	Methan- Produktion [Nm ³ /a]	Methan- Produktion [Nm ³ /h]
1963	54.500	200	1.103.577	606.967	69
1964	54.500	200	2.121.706	1.166.938	133
1965	54.500	200	3.061.002	1.683.551	192
1966	54.500	200	3.927.570	2.160.164	247
1967	54.500	200	4.727.041	2.599.873	297
1968	54.500	200	5.464.610	3.005.536	343
1969	54.500	200	6.145.070	3.379.789	386
1970	54.500	200	6.772.843	3.725.064	425
1971	57.600	200	7.414.781	4.078.130	466
1972	59.700	200	8.049.538	4.427.246	505
1973	61.800	200	8.677.669	4.772.718	545
1974	65.000	200	9.321.962	5.127.079	585
1975	68.100	200	9.979.141	5.488.528	627
1976	70.200	200	10.627.959	5.845.377	667
1977	73.300	200	11.289.312	6.209.121	709
1978	75.400	200	11.941.980	6.568.089	750
1979	77.500	200	12.586.636	6.922.650	790
1980	80.700	200	13.246.175	7.285.396	832
1981	83.800	200	13.917.419	7.654.580	874
1982	87.900	200	14.619.711	8.040.841	918
1983	91.000	200	15.330.397	8.431.719	963
1984	96.000	200	16.087.302	8.848.016	1.010
1985	107.000	200	17.008.341	9.354.588	1.068
1986	107.500	200	17.868.190	9.827.505	1.122
1987	111.001	200	18.732.354	10.302.795	1.176
1988	116.313	200	19.637.171	10.800.444	1.233
1989	131.882	200	20.787.187	11.432.953	1.305
1990	130.343	200	21.816.996	11.999.348	1.370
1991	144.806	200	23.059.931	12.682.962	1.448
1992	118.140	200	23.666.665	13.016.666	1.486
1993	100.198	200	23.863.110	13.124.710	1.498
1994	83.064	200	23.697.396	13.033.568	1.488
1995	83.560	200	23.554.557	12.955.007	1.479
1996	85.658	200	23.465.261	12.905.893	1.473
1997	89.341	200	23.457.456	12.901.601	1.473
1998	87.386	200	23.410.668	12.875.867	1.470
1999	89.838	200	23.417.154	12.879.435	1.470
2000	95.000	200	23.527.664	12.940.215	1.477
2001	105.000	200	23.832.108	13.107.659	1.496

 Tabelle 4-29
 rechnerische Methanproduktion (Deponie Asten)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoff- gehalt [kg C/t FS]	Deponiegas- Produktion [Nm ³ /a]	Methan- Produktion [Nm ³ /a]	Methan- Produktion [Nm ³ /h]
1972	29.500	200	597.349	328.542	38
1973	29.600	200	1.150.471	632.759	72
1974	30.700	200	1.683.040	925.672	106
1975	32.900	200	2.218.920	1.220.406	139
1976	34.000	200	2.735.583	1.504.570	172
1977	35.100	200	3.234.515	1.778.983	203
1978	35.200	200	3.696.840	2.033.262	232
1979	36.300	200	4.145.642	2.280.103	260
1980	36.400	200	4.561.719	2.508.945	286
1981	37.600	200	4.969.878	2.733.433	312
1982	39.700	200	5.388.958	2.963.927	338
1983	41.800	200	5.818.112	3.199.961	365
1984	43.000	200	6.238.336	3.431.085	392
1985	45.200	200	6.670.571	3.668.814	419
1986	83.500	200	7.844.879	4.314.684	493
1987	84.800	200	8.954.587	4.925.023	562
1988	87.000	200	10.022.920	5.512.606	629
1989	86.400	200	10.996.383	6.048.011	690
1990	85.700	200	11.880.299	6.534.164	746
1991	66.000	200	12.296.866	6.763.276	772
1992	64.900	200	12.658.905	6.962.398	795
1993	79.128	200	13.281.016	7.304.559	834
1994	63.959	200	13.547.800	7.451.290	851
1995	62.649	200	13.767.400	7.572.070	864
1996	63.502	200	13.987.270	7.692.998	878
1997	79.583	200	14.515.741	7.983.658	911
1998	85.113	200	15.115.271	8.313.399	949
1999	73.529	200	15.433.815	8.488.598	969
2000	80.000	200	15.858.726	8.722.300	996
2001	50.000	200	15.643.264	8.603.795	982

 Tabelle 4-30
 rechnerische Methanproduktion (Deponie Redlham)

4.3 Gegenüberstellung Messdaten – Rechendaten

Im folgenden Abschnitt wurden die Rechenergebnisse den Messdaten (Emissionsmessungen und aktive Entgasung) gegenübergestellt und miteinander verglichen. Eine eventuelle Oxidation des entweichenden Methans in der Oberflächenabdeckung blieb in der ersten Annahme unberücksichtigt (ausgenommenen davon die Deponie Nashua an der Methanoxidationsmessungen durchgeführt wurden). Exemplarisch für den Vergleich der Mess- und der Rechendaten einzelner Deponien sind die graphischen Gegenüberstellungen der Deponien Asten und Redlham angeführt. Die Abbildungen der übrigen Deponien sind Anhang 8.2 zu entnehmen.

Abbildung 4-5 Vergleich Messdaten und Rechendaten (Deponie Asten)

Abbildung 4-6 Vergleich Messdaten und Rechendaten (Deponie Redlham)

Für beide hier dargestellten Deponien zeigt sich eine erhebliche Diskrepanz zwischen berechneter und gemessener Methanproduktion. Für die Deponie Asten wird mithilfe der Modellrechnung die gemessene Produktion um den Faktor 2 überschätzt, während für die Deponie Redlham sogar von einer 3-fachen Überschätzung ausgegangen werden kann. Selbst unter Berücksichtigung einer mittleren Methanoxidation von 20% der emittierten Fracht (siehe Unsicherheitsbereich der Messwerte in Abbildung 4-5 und Abbildung 4-6) ändert sich das Ergebnis kaum.

In Abbildung 4-7 sind alle in Kapitel 4.1 beschriebenen Messwerte der Methanproduktion (unter Vernachlässigung der Oxidation) den Rechenwerten nach Tabasaran-Rettenberger (unter Verwendung folgender Parameter: $TOC_{abb}=200g/kg$ FS, T=30°C, k=0,035 a⁻¹) gegenübergestellt.

Abbildung 4-7 Vergleich von berechneter und gemessener Methanproduktion aller Deponien unter Vernachlässigung von Methanoxidation

Es zeigt sich, dass bei einem Großteil der untersuchten Deponien (Ausnahme drei Deponien in den USA: Nashua, Landfill D, Landfill E) die Methanbildung mithilfe des Rechenmodells gegenüber den Messwerten überschätzt wird.

Selbst bei Ansatz einer Methanoxidation in der Abdeckschitcht von 20% (siehe Abbildung 4-8) liegt der überwiegende Anteil der Messwerte unterhalb den berechneten Produktionsraten.

Abbildung 4-8 Vergleich von berechneter und gemessener Methanproduktion aller Deponien unter Berücksichtigung von 20% Methanoxidation

Die meisten Deponien für die sich mittels Modellrechnung eine Unterschätzung der gemessenen Methanemissionen ergibt, kommen aus den USA (siehe Abbildung 4-9). Dies könnte eventuell auf den höheren Anteil an organischen Abfällen im amerikanischen Restmüll zurückzuführen sein (vergleiche Abbildung 8-38 und Abbildung 8-39).

Abbildung 4-9 Vergleich von berechneter und gemessener Methanproduktion aller europäischen Deponien (unter Annahme von 20% Methanoxidation)

Um eine bessere Aussage über die Unterschiede zwischen Mess- und Rechenergebnissen machen zu können, wurde folgende Klasseneinteilung vorgenommen (siehe auch Abbildung 4-10):

Klasse I	Messwerte/Rechenwerte $> 1,00$
Klasse II	1,00 > Messwerte/Rechenwerte > 0,75
Klasse III	0,75 > Messwerte/Rechenwerte > 0,50
Klasse IV	0,50 > Messwerte/Rechenwerte > 0,25
Klasse V	0,25 > Messwerte/Rechenwerte

Abbildung 4-10 Klasseneinteilung - Vergleich von berechneter und gemessener Methanproduktion (unter Annahme von 20% Methanoxidation)

Für die insgesamt 46 bzw. 35 Wertepaare (39 bzw. 32 verschiedene Deponien) von Rechenund Messdaten ergibt sich dadurch folgende Verteilung:

Klasse	Anzahl der Wertepaare [%]		Anzahl der Wertepaare	relative Häufigkeit [%]
	alle Depon	ien	europäische	Deponien
Klasse I	9	19,6	5	14,3
Klasse II	6	13,0	1	2,9
Klasse III	10	21,7	8	22,9
Klasse IV	13	28,3	13	37,1
Klasse V	8	17,4	8	22,9
Summe	46	100	35	100

Tabelle 4-31	Klasseneinteilung für den Vergleich von Mess- zu Rechendaten (unter Annahme vor
	20% Methanoxidation)

Abbildung 4-11 Häufigkeitsverteilung des Verhältnisses von Messwerten zu Rechenwerten (unter Annahme von 20% Methanoxidation)

Aus Abbildung 4-11 ist deutlich ersichtlich, dass der überwiegende Teil der gemessenen Methanproduktion auf Deponien kleiner als 75% der berechneten Methanproduktion ist. Das Histogramm zeigt für die Klasse IV (0,25 - 0,50) die höchste Wahrscheinlichkeit. Von den europäischen Deponien liegen 40 % innerhalb dieser Klasse. Für diese Deponien gilt, dass die Rechenwerte die gemessene Methanproduktion um den Faktor 2 bis 4 überschätzen.

Von jenen Deponien die in der Klasse I liegen, übersteigen nur die Messwerte der Deponien aus den USA (Nashua, Landfill-D, Landfill-E) die mathematisch prognostizierte Methanbildung deutlich. Grund dafür kann einerseits ein höherer Gehalt an organisch Abbaubarem im deponierten Restmüll sein, andererseits sind die angegebenen Daten über die deponierte Abfallmenge und deren zeitlicher Anfall mit großen Unsicherheiten behaftet.

Ein Vergleich der Häufigkeitsverteilung des Verhältnisses von Messwerten zu Rechenwerten von Deponien mit unterschiedlicher Oberflächenabdeckung (Vorhandensein oder Fehlen einer Dichtelementes) lässt keine Aussagen über einen eventuellen Einfluss der Oberflächenabdeckung auf die Methanproduktion der gesamten Deponie zu (siehe Abbildung 4-12). Grund dafür dürfte die Tatsache sein, dass selbst bei überwiegender Abdichtung der Deponie das entstehende Methan über die offene Schüttfläche oder Böschungsbereiche ohne Dichtelement entweicht.

Abbildung 4-12 Häufigkeitsverteilung des Verhältnisses von Messwerten zu Rechenwerten der europäischen Deponien (unter Annahme von 20% Methanoxidation)

Bei den hier dargestellten Ergebnissen muss berücksichtigt werden, dass die zu vergleichenden Zwecken herangezogenen Messwerte mit teils erheblichen Unsicherheiten behaftet sind. Dies ist einerseits auf den Fehler der verwendeten Messmethode selbst und andererseits auf die zeitlich beschränkte Messdauer (zumeist Tage) und damit Berücksichtigung bestimmter meteorologischer Verhältnisse (Luftdruck) zurückzuführen. Allerdings kann bei Verwendung von zahlreichen Messergebnissen von verschiedenen Deponien davon ausgegangen werden, dass die Messungen bei unterschiedlichen Luftdruckbedingungen durchgeführt wurden und es somit nicht zu einer systematischen Unter- bzw. Überschätzung der Methanemissionen kommt. Im Mittel wird bei Verwendung der Tabasaran-Rettenberger Formel und der in Tabelle 4-28 angeführten Parameterwerte die Methanproduktion in europäischen Deponien um den Faktor 2,5 überschätzt. Bei Berücksichtigung einer Methanoxidation von 20% in der Oberflächenabdeckung beträgt der Überschätzungsfaktor noch immer 2.

Mögliche Gründe für die Diskrepanz zwischen Messdaten und Modellrechnungen werden im Abschnitt 5 diskutiert.

4.3.1 Sensitivitätsanalyse der Berechnungen

Um den Einfluss der einzelnen Eingangsparameter auf das Rechenergebnis des Modells von Tabasaran-Rettenberger zu untersuchen, wurden Sensitivitätsanalysen durchgeführt. Dazu wurden die Parameter Temperatur T, Abbaugeschwindigkeit k und der abbaubare Kohlenstoffgehalt TOC_{abb} variiert und der Mittelwert des Verhältnisses von gemessener zu berechneter Methanproduktion festgehalten. Dabei wurden nur die europäischen Deponien berücksichtigt, für die eine mittlere Methanoxidation von 20 % angenommen wurde. Eine Annäherung an ein Verhältnis (gemessene/berechnete Methanproduktion) von 1 bedeutet eine zu-

nehmende Übereinstimmung von Rechendaten und Messdaten. Die Ergebnisse der Sensitivitätsanalysen sind in Abbildung 4-13 bis Abbildung 4-15 dargestellt.

Abbildung 4-13 Sensitivität des Verhältnisses "Gemessene – Berechnete Methanproduktion" von der Temperatur T (für europäische Deponien unter der Annahme von 20% Methanoxidation)

Abbildung 4-14 Sensitivität des Verhältnisses "Gemessene – Berechnete Methanproduktion" von der Abbaugeschwindigkeit k (für europäische Deponien unter der Annahme von 20% Methanoxidation)

Abbildung 4-15 Sensitivität des Verhältnisses "Gemessene – Berechnete Methanproduktion" vom Gehalt des abbaubaren Kohlenstoffs TOC_{abb} (für europäische Deponien unter der Annahme von 20% Methanoxidation)

Es ist deutlich erkennbar, dass vor allem der Gehalt des abbaubaren Kohlenstoffs TOC_{abb} das Ergebnis entscheidend beeinflusst. Eine genaue Bestimmung dieser Eingangsgröße ist daher unerlässlich. Eine Halbierung des abbaubaren Kohlenstoffgehalts auf 100 g/kg FS führt zu einer guten Übereinstimmung des Mittelwertes von Mess- und Rechendaten (Der Mittelwert des Verhältnisses liegt nahe bei 1). Zu beachten ist dabei, dass bei einem Verhältnis von 1 (TOC_{abb}~ 90 g/kg FS) die gemessenen Methanemissionen zahlreicher Deponien mit Hilfe des Rechenmodells auch unterschätzt werden (siehe Abbildung 4-16).

Abbildung 4-16 Vergleich von berechneter (TOC_{abb} = 90 g/kg FS) und gemessener Methanproduktion aller europäischen Deponien (unter Annahme von 20% Methanoxidation)

Vergleicht man den ermittelten Wert des TOC_{abb} von 90 g/kg FS bei dem die "beste" Übereinstimmung des Mittelwertes von Mess- und Rechendaten erzielt werden kann, mit den Angaben aus Müllanalysen (105 bis 143 g/kg FS), so zeigt sich dass mittelfristig unter Deponiebedingungen weniger als die von Tabasaran-Rettenberger (1987) angenommenen 70 % (errechnet sich aus dem Temperaturglied, Annahme T=30°C) der organisch abbaubaren Substanz mineralisiert werden.

4.3.2 Gründe für Unterschiede zwischen Mess- und Rechendaten

Mögliche Gründe für die Diskrepanz zwischen Mess- und Rechendaten sind:

- geringerer organisch abbaubarer Kohlenstoffgehalt im Haus- bzw. Restmüll als angenommen (200 g/kg FS)
- unvollständige Mineralisierung des organisch abbaubaren Kohlenstoffes, dies kann bedingt sein durch:
 - (lokalen) Wassermangel innerhalb des Deponiekörpers (verursacht durch dichte Oberflächenabdeckung und ungleichmäßige Wasserverteilung)
 - lokale Versäuerung durch organische Säurebildung im Rahmen des anaeroben Abbaus (Åkesson & Nilsson, 1998)
- teilweise aerobe Mineralisierung des organisch abbaubaren Kohlenstoffes unmittelbar nach Ablagerung (Ehrig, 1989)
- höhere Methanoxidationsraten in der Deponieabdeckung als angenommen (20%)

Ein Vergleich des angesetzten abbaubaren Kohlenstoffgehaltes von 200 g/kg FS mit Literaturdaten zeigt deutlich, dass dieser Wert zu hoch angenommen wird. Laut verschiedensten Studien aus dem deutschsprachigen Raum beträgt der kurz- und mittelfristig abbaubare Kohlenstoffgehalt im Haus- bzw. Restmüll zwischen 105 und 145 g/kg FS. Diese Daten stammen aus den 80er und 90er Jahren.

Aerobe Umsetzungsprozesse spielen ebenso wie die Versäuerung lokaler Bereiche für den Stoffhaushalt von Deponien eine untergeordnete Rolle (Ehrig, 1989; Åkesson und Nilsson, 1996).

Von weit aus größerer Bedeutung für den Deponiereaktor ist das Vorhandensein bzw. Fehlen von Wasser (Klink & Ham, 1982; Bogner & Spokas, 1993; Christensen et al., 1996). Jüngste wissenschaftliche Arbeiten (Bendz, 1998; Rosqvist & Destouni, 1999; Fellner et al., 2003) zeigen deutlich, dass die Wasserströmung und damit die Wasserverteilung innerhalb des Deponiekörpers äußerst heterogen ist und daher sich selbst bei reichlicher äußerer Wasserzufuhr trockene Bereiche innerhalb des Deponiekörpers ausbilden. Dies bedeutet, dass größere Teile innerhalb der Deponie von biochemischen Umsetzungsreaktionen aufgrund von Wassermangel ausgeschlossen sind. Sanierungsmassnahmen an Altdeponien (Berger Deponie und Fischer Deponie) belegen diese Erkenntnisse ebenso wie Untersuchungen an Altlastenmaterial (Heyer, 2003).

Die Methanoxidation in der Oberflächenabdeckung ist von verschiedensten Faktoren (Substrat, Wassergehalt, Temperatur, spezifische Methanbelastung) abhängig. Messungen zur Methanoxidation kommen daher zu unterschiedlichsten Ergebnissen. Auf einzelnen Teilflächen wurden Methanoxidationsraten von bis zu 90 % gemessen (Börjesson et al., 2001; Bergamaschi et al., 1998). Eine Untersuchung (Chanton et al., 1999) bei der die gesamte Deponieoberfläche über einen längeren Zeitraum betrachtet wurde, kam auf eine mittlere jährliche Methanoxidationsrate von 12 %. Die in dieser Studie angesetzte Oxidation von 20 % scheint somit keineswegs zu niedrig gewählt.

5 ZUSAMMENFASSUNG UND SCHLUSSFOLGERUNG

Im Rahmen der vorliegenden Studie wurde untersucht inwieweit die Ergebnisse von Methanemissionsmessungen auf Deponien mit den Resultaten von Deponiegasbildungsmodellen übereinstimmen. Dazu wurden in der Literatur dokumentierte Emissionsmessungen auf Deponien mit Berechnungen mittels Gasbildungsmodellen verglichen.

Die in dieser Studie herangezogenen Methanemissionsmessungen sind in Tabelle 5-1 bis Tabelle 5-3 zusammengefasst. Die Daten beruhen auf unterschiedlichen Messmethoden (Boxmessung, Tracergas-Methode und Bilanz-Methode). Die Tracergas-Methode gilt als das zuverlässigste Messverfahren zur Bestimmung der diffusen Methanemissionen von Deponien. Der Nachteil dieser Methode ist der hohe technische Aufwand. Für eine kontinuierliche Aufzeichnung der Emissionsströme über längere Zeiträume eignet sich am besten die Bilanzmethode. Das gerätetechnisch einfachste und damit am häufigsten angewandte Verfahren ist die Gasboxmessung. Problematisch bei dieser Methode ist, dass von punktförmigen Einzelmessungen auf Gesamtemissionen hochgerechnet werden muss. Durchgeführte Vergleichmessungen an einzelnen Deponien mit verschiedenen Messmethoden zeigen, dass die Messwerte der einzelnen Verfahren gut übereinstimmen. Diese Tatsache wurde als wesentliches Indiz für die Zuverlässigkeit der Messverfahren und der damit ermittelten Messdaten gewertet. Bei Anwendung der Boxmessungen ist für eine verlässliche Bestimmung der diffusen Emissionen allerdings eine Vielzahl von Messpunkten erforderlich.

Aus dokumentierten Messungen über längere Zeiträume ist ersichtlich, dass die Emissionswerte sehr stark von den Luftdruckverhältnissen abhängig sind. Mit zunehmenden Luftdruck sinkt die emittierte Methanmenge und umgekehrt. Bei einer Vielzahl von Messungen kann davon ausgegangen werden, dass diese zu unterschiedlichen Luftdruckverhältnissen durchgeführt wurden und daher im Mittel den "tatsächlich" emittierten Methanmengen entsprechen. Ebenso lässt sich aus bisherigen Messungen festhalten, dass bei teilabgedeckten Deponien der Methanaustritt aus Deponiebereichen mit Oberflächenabdichtung nahezu unterbunden werden kann. Der überwiegende Anteil des produzierten Methans (zwischen 70 und 99%) entweicht in diesem Fall über die offene Schüttfläche. Neben der Schüttfläche zählen vor allem Böschungsbereiche zu jenen Flächen wo mit verstärktem Methanaustritt zu rechnen ist.

Für die Ermittlung der aktuellen Methanproduktion wurde neben den diffusen Methanemissionen und der über aktive Entgasungsanlagen (sofern vorhanden) erfassten Methanmenge auch eine mittlere Methanoxidation in der Oberflächenabdeckung von 20 % berücksichtigt.

Die rechnerische Ermittlung der Methanproduktion erfolgte in Anlehnung an Studien des Umweltbundesamtes und des Arbeitsbehelfs "EPER" (ÖWAV, 2002) unter Verwendung des Deponiegasbildungsmodells von Tabasaran-Rettenberger (1987). Die Werte der Eingangsparameter für dieses Modell wurden konform den Studien des Umweltbundesamtes (TOC_{abb} = 200 g/kg FS; T = 30°C; k = 0,035 a⁻¹) gewählt, wobei vereinfachender Weise ein über die Zeit konstanter Kohlenstoffgehalt im Haus- bzw. Restmüll angenommen wurde.

Ein Vergleich von gemessener Methanproduktion (Methanemissionen, aktiv erfasstes Methan und Methanoxidation) mit berechneter Methanproduktion (nach Tabasaran-Rettenberger, 1987) zeigt, dass es bei Verwendung der Eingangsparameter gemäß Umweltbundesamt zu einer generellen Überschätzung der Methanbildung von Deponien kommt. Im Mittel wird mit dem Rechenmodell gegenüber den Messungen die doppelte Methanbildungsrate prognostiziert.

Durchgeführte Sensitivitätsanalysen der Modellrechnungen konnten den Eingangsparameter biologisch abbaubarer Kohlenstoffgehalt TOC_{abb} als maßgeblichen Einflussfaktor des Rechenergebnisses identifizieren. Daraufhin angestellte Literaturrecherchen über Haus- bzw. Restmüllanalysen zeigten, dass der Gehalt an biologisch abbaubarem Kohlenstoff TOC_{abb} im Bereich von 100 bis 150 g/kg FS liegt. Im Vergleich dazu basieren die durchgeführten Methanproduktionsberechungen auf einem Wert von 200 g/kg FS. Da der TOC_{abb} direkt proportional in das Rechenergebnis einfließt, wird das Methanproduktionspotential durch diese Fehlannahme im Mittel um 60 % überschätzt.

Neben dem zu hohen Gehalt an biologisch abbaubarem Kohlenstoff, lässt sich die mittlere Abweichung von Messung und Berechung auch darauf zurückführen, dass unter Deponiebedingungen über einen Zeitraum von 20 bis 100 Jahren nur ein Teil der biologisch abbaubaren Verbindungen mineralisiert werden. Im Modell von Tabasaran-Rettenberger liegt dieser Mineralisierungsanteil (unter der Annahme von T = 30°C) bei 0,7. Tatsächlich dürfte der Anteil an organischen Kohlenstoffverbindungen, der mittelfristig unter Deponiebedingungen zu Methan und Kohlendioxid abgebaut wird, geringer sein. Verantwortlich dafür ist die ungleichmäßige Wasserverteilung innerhalb des Deponiekörpers (Bendz, 1998; Fellner et al., 2003), die dazu führt, dass sich selbst unter reichlicher äußerer Wasserzufuhr trockene Bereiche innerhalb der Abfallschüttung ausbilden, in denen die Abbauprozesse zum Erliegen kommen. Sanierungsmassnahmen an Altdeponien (Berger Deponie und Fischer Deponie) belegen diese Erkenntnisse ebenso wie Untersuchungen an Altlastenmaterial (Heyer, 2003).

Die Unterschiede zwischen gemessener und mittels Modell berechneter Methanbildung lassen sich somit einerseits auf zu hohe Annahmen hinsichtlich des biologisch abbaubaren Kohlenstoffgehaltes TOC_{abb} im Haus- bzw. Restmüll und andererseits auf die Tatsache, dass es unter Deponiebedingungen über einen Zeitraum von 20 bis 100 Jahren nicht zu einer vollständigen Mineralisierung der biogenen Kohlenstoffverbindungen kommen kann, zurückführen.

Tabelle 5-1 Zusammenstellung der dokumentierten Methanemissionsmessungen auf Deponien

		[g CH ₄ /(m ² h)]							
Deponie	Literaturguelle	Details	Mess-	Mess-			berechnete Produktion		
Depome	Literatur quene	siehe	zeitpunkt	methode	diffuse En	nissionen			nach
					(Flächenar	(Flächenanteil in %)		Summe	Tabasaran-
					offene Fläche	abgedeckte Fläche	erfasst		(1987)
Asten (A)	Flögl, 2002	S.17	2001	Gasbox	n.b. (5)	2,00 (95)	1,29	3,29	6,13
Redlham (A)	Flögl, 2002	S.17	2001	Gasbox	1,15 (50)	1,15 (50)	0,90	2,05	6,71
Gasselsdorf (A)	FTU, 1996	S.18	1994/95	Gasbox	0,35 (100)	-	0,13 - 0,27	0,48	1,88
Deponie_A (A)	anonym	S.19	2003	Gasbox	2,46 – 4,25 (20)	n.b. (80)	0,09 - 0,14		4,38
Deponie_B (A)	anonym	S.19	2002	Gasbox	4,47 (30)	n.b (70)	0,14 - 0,21		7,35
Rochester (USA)	Mosher et al., 1999	S.22	1994	Gasbox	-	0,38 (100)	3,62	4,00	6,80
	Mosher et al., 1999	\$ 22	1995	Gasbox	-	2,73 (100)	-	2,73	3,54
Nashua (USA)	Czepiel et al 2000	5.22	1994	Tracergas	3,2	3,27		3,27	3,47
			1996/97	Tracergas	2,4	-6	2,29	4,75	3,60
Wayland (USA)	Mosher et al., 1999	S.22	1995	Gasbox	1,29 (37)	0,05 (63)	-	0,51	_
Sudbury (USA)	Mosher et al., 1999	S.22	1994	Gasbox	-	0,69 (100)	-	0,69	-
			1994	Tracergas	5,44 ±	0,90	-	$5,44 \pm 0,90$	7,75
Landfill-A (USA)	Mosher et al., 1999	S.22	1995	Tracergas	$5,48 \pm$	1,20	-	$5,\!48 \pm 1,\!20$	7,80
			1995	Gasbox	9,00 (59)	0,08 (41)	-	5,33	9,62
Landfill B (USA)	Moshar at al. 1000	5 22	1994	Tracergas	3,81 ±	0,49	3,37	$7,18 \pm 0,49$	9,77
Lanumi-D (USA)	Wosher et al., 1999	5.22	1995	Tracergas	3,77 ±	1,28	3,37	$7,14 \pm 1,28$	7,19
Landfill C (USA)	Mosher et al. 1000	\$ 22	1994	Tracergas	2,13 ±	1,60	3,67	$5,79 \pm 1,60$	7,40
Landini-C (USA)	Wosher et al., 1999	5.22	1995	Tracergas	$0,94 \pm$	0,12	3,67	$4{,}61\pm0{,}12$	3,39
Landfill-D (USA)	Mosher et al., 1999	S.22	1994	Tracergas	1,94 ±	0,45	2,85	4,80	6,25
Landfill-E (USA)	Mosher et al., 1999	S.22	1994	Tracergas	1,97 (60)	0,16 (40)	1,25	2,93	6,25
	Börjesson et al., 2001		1997/98	Gasbox	-	0,14 - 0,86 (100)	0,22 - 0,43	0,36 -1,29	4,83
Falköping (S)	Galla at al. 2001	S.24	1998	Tracergas	0,67 –	1,74	0,19 – 1,34	0,86 - 3,08	4,45
	Galle et al., 2001		1999	Tracergas	1,17 –	1,86	0,31	1,48-2,17	4,11

¹⁾ angenommene Parameterwerte: TOC_{abb}=200 g/kg FS; T=30°C; k=0,035a⁻¹

					Methanmenge [g CH ₄ /(m ² h)]				
Deponie	Literaturguelle	raturquelle Details Mess- Mess- Mess-				Messwer			berechnete Produktion
	Liter atur quene	siehe	zeitpunkt	methode	diffuse I	Emissionen			nach
					(Flächena	anteil in %)	aktiv	Summe	Tabasaran-
					offene	abgedeckte	erfasst	Summe	Rettenberger ¹
					Fläche	Fläche			(1987)
			1996	Gasbox	-	4,00 (100)	0	4,00	6,87
			1996	Gasbox	-	3,69 (100)	0	3,69	6,87
Roche-Conde (F)	Tregoures et al. 1999	\$ 27	1996	Gasbox	-	1,32 – 4,99 (100)	0	1,32 – 4,99	6,87
Roche-Conde (1)	fregoures et al., 1999	5.27	1996	Tracergas	-	2,72 (100)	0	2,72	6,87
			1996	Tracergas	-	2,23 (100)	0	2,23	6,87
			1996	Bilanz	-	$0,84\pm0,24^{2}$ (100)	0	-	6,87
			1999	Tracergas	$0,57\pm0,1$		0,26	0,83±0,1	3,16
Davanahanaan			2000	Gasbox	5,35±2,39 (10)	n.b. (90)	0,59	1,12	3,24
(NIL)	Scharff et al., 2001	S.28	2000	Bilanz	4,52±0,24 (10)	n.b. (90)	0,59	1,04	3,24
(NL)			2000	Tracergas	3,82±0,45 (10)	n.b. (90)	0,59	0,97	3,24
			2000	Tracergas	0,5	7±0,06	0,59	1,16±0,06	3,24
Hollandes Brug (NL)	Scharff et al., 2001	S.28	1997	Tracergas	0,29	9±0,12	0	0,29±0,12	2,94
			1997	Tracergas	0,3	1±0,06	0	0,31±0,06	-
Novema (NII.)	Schouff at al. 2001	C 20	1998	Tracergas	0,1	5±0,06	0,10	0,25±0,06	-
Inauerna (INL)	Schafff et al., 2001	3.20	1999	Tracergas	0,52	2±0,15	0,05	0,57±0,15	-
			2000	Tracergas	0,2	7±0,07	0,08	0,35±0,07	-
Filborna (S)	Samuelsson et al., 2001	S.33	2001	Tracergas	(),81	1,84	2,65	5,66
Hagby (S)	Samuelsson et al., 2001	S.33	2001	Tracergas	(),24	0,77	1,02	2,32
Häljestorp (S(Samuelsson et al., 2001	S.33	2001	Tracergas	(),68	0,37	1,05	-
Härlövs Ängar (S)	Samuelsson et al., 2001	S.33	2001	Tracergas	(),13	0,33	0,46	0,66

¹⁾ angenommene Parameterwerte: $TOC_{abb}=200 \text{ g/kg FS}; T=30^{\circ}C; k=0,035a^{-1}$ ²⁾ nur Teilfläche

					[g CH ₄ /(m ² h)]				
Deponie	Literaturquelle	Details	Mess-	Mess-	Messwe	rte	berechnete Produktion		
	1	siehe	zeitpunkt	methode	diffuse Emissionen	aktiv erfasst	Summe	berechnete Produktion nach Tabasaran- Rettenberger ¹⁾ (1987) 5,56 6,91 10,51 12,51 13,54 18,02 1,92 5,03 6,32 9,79 2,25 2,61 1,91 3,39 2,93 0,90 2,11	
NL-1		S.35	1993/94	Bilanz	3,60	0,57	4,17	5,56	
NL-2		S.35	1993/94	Bilanz	2,58	1,58	4,16	6,91	
NL-3		S.35	1993/94	Bilanz	2,41	-	2,41	10,51	
NL-4		S.35	1993/94	Bilanz					
NL-5		S.35	1993/94	Bilanz	4,08	0,00	4,08	12,51	
NL-6		S.35	1993/94	Bilanz	1,65	2,13	3,78	12,51	
NL-7		S.35	1993/94	Bilanz	11,13	-	11,13	13,54	
NL-8		S.35	1993/94	Bilanz	3,45	-	3,45	18,02	
NL-9		S.35	1993/94	Bilanz	0,75	0,44	1,19	1,92	
NL-10		S.35	1993/94	Bilanz	1,52	0,00	1,52	5,03	
NL-11	Oonk & Boom, 1995	S.35	1993/94	Bilanz	0,57	0,22	0,79	6,32	
NL-12		S.35	1993/94	Bilanz	-	0,02	0,02		
NL-13		S.35	1993/94	Bilanz	2,19	2,47	4,66	9,79	
NL-14		S.35	1993/94	Bilanz	1,41	0,52	1,93	2,25	
NL-15		S.35	1993/94	Bilanz	0,25	0,99	1,24	2,61	
NL-16		S.35	1993/94	Bilanz	0,49	0,36	0,85	1,91	
NL-17		S.35	1993/94	Bilanz	0,16	0,00	0,16	3,39	
NL-18		S.35	1993/94	Bilanz	0,30	0,07	0,37	2,93	
NL-19		S.35	1993/94	Bilanz	0,90	0,11	1,00	0,90	
NL-20		S.35	1993/94	Bilanz	0,05	0,76	0,81	2,11	
NL-21		S.35	1993/94	Bilanz	-	0,84	0,84	3,72	
Zeeasterweg (NL)	Scharff et al., 2001	S.35	1999	Bilanz	$0,07 \pm 0,01$	0,00	$0,07 \pm 0,01$	1,66	

Tabelle 5-3Zusammenstellung der dokumentierten Methanemissionsmessungen auf Deponien

¹⁾ angenommene Parameterwerte: $TOC_{abb}=200 \text{ g/kg FS}$; $T=30^{\circ}C$; $k=0,035a^{-1}$

6 ABBILDUNGS- UND TABELLENVERZEICHNIS

6.1 Abbildungsverzeichnis

Abbildung 3-1	Vereinfachtes Schema der in einer "Hausmülldeponie"	
	ablaufenden anaeroben Prozesse. (nach Stegmann & Spendlin,	
	1987)	. 6
Abbildung 3-2	Nach Phasen (I-V) aufgeschlüsselte Zusammensetzung von	
	Deponiegas und -sickerwasser (Farquhar & Rovers, 1973)	. 6
Abbildung 3-3	Methanemissionen von Deponien	. 7
Abbildung 3-4	Systembild Methanemissionen von Deponien	. 8
Abbildung 4-1	Häufigkeitsverteilung der gemessenen Methankonzentration	
C	(Flögl, 2002)	16
Abbildung 4-2	Methanemissionen der Deponie Martin's Farm (Jones et al., 1990)	25
Abbildung 4-3	Abhängigkeit der Methanemissionsrate vom Luftdruck (Czepiel et	
C	al., 1999)	30
Abbildung 4-4	Methanoxidationsrate in Abhängigkeit der Bodentemperatur	
U	(Deponie Nashua)	38
Abbildung 4-5	Vergleich Messdaten und Rechendaten (Deponie Asten)	44
Abbildung 4-6	Vergleich Messdaten und Rechendaten (Deponie Redlham)	44
Abbildung 4-7	Vergleich von berechneter und gemessener Methanproduktion aller	
	Deponien unter Vernachlässigung von Methanoxidation	45
Abbildung 4-8	Vergleich von berechneter und gemessener Methanproduktion aller	
11001100118 1 0	Deponien unter Berücksichtigung von 20% Methanoxidation	46
Abbildung 4-9	Vergleich von berechneter und gemessener Methanproduktion aller	
11001100118 1 3	europäischen Deponien (unter Annahme von 20%	
	Methanoxidation)	46
Abbildung 4-10	Klasseneinteilung - Vergleich von berechneter und gemessener	
ricollaung + 10	Methanproduktion (unter Annahme von 20% Methanoxidation)	47
Abbildung 4-11	Häufigkeitsverteilung des Verhältnisses von Messwerten zu	• •
The official states of the sta	Rechenwerten (unter Annahme von 20% Methanoxidation)	48
Abbildung 4-12	Häufigkeitsverteilung des Verhältnisses von Messwerten zu	
Theomating 112	Rechenwerten der europäischen Deponien (unter Annahme von	
	20% Methanoxidation)	19
Abbildung 4-13	Sensitivität des Verhältnisses "Gemessene – Berechnete	
ribbildung + 15	Methanproduktion" von der Temperatur T (für europäische	
	Deponien unter der Annahme von 20% Methanoxidation)	50
Abbildung 4-14	Sensitivität des Verhältnisses "Gemessene – Berechnete	
ribbildung + 1+	Methanproduktion" von der Abhaugeschwindigkeit k (für	
	europäische Deponien unter der Annahme von 20%	
	Methanoxidation)	50
Abbildung 1 15	Sansitivität das Varhältnissas "Gamassana Barachnata	50
Abbildulig 4-15	Methanproduktion" vom Gehalt des abhauharen Kohlenstoffs	
	TOC (für auronöische Depenien unter der Annehme von 20%	
	Mothenovidation)	51
Abbildung 1 16	We related worn be reaching to $TOC = 0.0 \text{ g/kg FS}$ and generating)1
Abbildulig 4-10	Mathanproduktion aller auropäisahen Deponien (unter Annahme	
	von 20% Mothenovidation)	51
Abbildura 0 1	Von 20% Mendoton and Dechardeter (Density Consultation)) I 04
Additiong 8-1	vergieich wessdaten und Kechendaten (Deponie Gasselsdorf)	1 4

Abbildung 8-2	Vergleich Messdaten und Rechendaten (Deponie_A)	94
Abbildung 8-3	Vergleich Messdaten und Rechendaten (Deponie_B)	95
Abbildung 8-4	Vergleich Messdaten und Rechendaten (Deponie Rochester)	95
Abbildung 8-5	Vergleich Messdaten und Rechendaten (Deponie Nashua)	95
Abbildung 8-6	Vergleich Messdaten und Rechendaten (Deponie Landfill-A)	96
Abbildung 8-7	Vergleich Messdaten und Rechendaten (Deponie Landfill-B)	96
Abbildung 8-8	Vergleich Messdaten und Rechendaten (Deponie Landfill-C)	96
Abbildung 8-9	Vergleich Messdaten und Rechendaten (Deponie Landfill-D)	97
Abbildung 8-10	Vergleich Messdaten und Rechendaten (Deponie Landfill-E)	97
Abbildung 8-11	Vergleich Messdaten und Rechendaten (Deponie Falköping)	97
Abbildung 8-12	Vergleich Messdaten und Rechendaten (Deponie Rochy-Conde)	98
Abbildung 8-13	Vergleich Messdaten und Rechendaten (Deponie Braambergen)	98
Abbildung 8-14	Vergleich Messdaten und Rechendaten (Deponie Hollandse Brug)	98
Abbildung 8-15	Vergleich Messdaten und Rechendaten (Deponie Filborna)	99
Abbildung 8-16	Vergleich Messdaten und Rechendaten (Deponie Hollandse Brug)	99
Abbildung 8-17	Vergleich Messdaten und Rechendaten (Deponie Häljestorp)	99
Abbildung 8-18	Vergleich Messdaten und Rechendaten (Deponie 1-NL)	100
Abbildung 8-19	Vergleich Messdaten und Rechendaten (Deponie 2-NL)	100
Abbildung 8-20	Vergleich Messdaten und Rechendaten (Deponie 3-NL)	100
Abbildung 8-21	Vergleich Messdaten und Rechendaten (Deponie 5-NL)	101
Abbildung 8-22	Vergleich Messdaten und Rechendaten (Deponie 6-NL)	101
Abbildung 8-23	Vergleich Messdaten und Rechendaten (Deponie 7-NL)	101
Abbildung 8-24	Vergleich Messdaten und Rechendaten (Deponie 8-NL)	102
Abbildung 8-25	Vergleich Messdaten und Rechendaten (Deponie 9-NL)	102
Abbildung 8-26	Vergleich Messdaten und Rechendaten (Deponie 10-NL)	102
Abbildung 8-27	Vergleich Messdaten und Rechendaten (Deponie 11-NL)	103
Abbildung 8-28	Vergleich Messdaten und Rechendaten (Deponie 13-NL)	103
Abbildung 8-29	Vergleich Messdaten und Rechendaten (Deponie 14-NL)	103
Abbildung 8-30	Vergleich Messdaten und Rechendaten (Deponie 15-NL)	104
Abbildung 8-31	Vergleich Messdaten und Rechendaten (Deponie 16-NL)	104
Abbildung 8-32	Vergleich Messdaten und Rechendaten (Deponie 17-NL)	104
Abbildung 8-33	Vergleich Messdaten und Rechendaten (Deponie 18-NL)	105
Abbildung 8-34	Vergleich Messdaten und Rechendaten (Deponie 19-NL)	105
Abbildung 8-35	Vergleich Messdaten und Rechendaten (Deponie 20-NL)	105
Abbildung 8-36	Vergleich Messdaten und Rechendaten (Deponie 21-NL)	106
Abbildung 8-37	Vergleich Messdaten und Rechendaten (Deponie Zeeasterweg)	106
Abbildung 8-38	Abfallzusammensetzung USA 1999 (U. S. Environmental	
	Protection Agengy, 2001)	107
Abbildung 8-39	Restmüllzusammensetzung Österreich 1996 (BAWP, 1998)	107

6.2 Tabellenverzeichnis

Tabelle 3-1	Vergleich von Messmethoden (ergänzt nach Scharff et al., 2001)	11
Tabelle 3-2	Mathematische Modelle zur Berechnung der Deponiegasbildung	
	(nach Baumeler et al., 1998; Quellen: ¹⁾ Tabasaran & Rettenberger,	
	1987; ²⁾ Bundesamt für Umweltschutz, 1982 zitiert in Ehrig, 1986;	
	³⁾ Ehrig, 1986; ⁴⁾ Hoeks & Oosthoeks, 1991; ⁵) Marticorena et al.,	
	1993)	13
Tabelle 4-1	Beziehung zwischen FID-Messwerten und Gasboxmesswerten	
	(Flögl, 2002)	16
Tabelle 4-2	Daten der untersuchten Deponien Asten und Redlham (Flögl,	
	2002)	17
Tabelle 4-3	Erfasste und emittierte Methanmengen der Deponien Asten und	
	Redlham (Flögl, 2002; Mitteilung UBA, 2003)	17
Tabelle 4-4	Daten der untersuchten Deponie Gasselsdorf (FTU, 1996)	18
Tabelle 4-5	Methanemissionsmessungen auf der Deponie Gasselsdorf (FTU,	
	1996)	18
Tabelle 4-6	Daten der untersuchten Deponien A und B	19
Tabelle 4-7	Emissionsmessungen auf Deponie_A und Deponie_B	20
Tabelle 4-8	Erfasste und emittierte Methanmengen der Deponien A und B	21
Tabelle 4-9	Zusammenstellung der untersuchten Deponien (Mosher et al.,	
	1999)	22
Tabelle 4-10	Ergebnisse der Boxenmessungen (Mosher et al., 1999)	23
Tabelle 4-11	Daten der untersuchten Deponien Falköping und Hökhuvud	
	(Börjesson et al., 2001)	24
Tabelle 4-12	Methanemissionen Deponie Falköping (Börjesson et al., 2000 und	
	Börjesson et al., 2001)	24
Tabelle 4-13	Daten der untersuchten Deponien F1 und F2 (Taramini et al.,	
	2003)	26
Tabelle 4-14	Emissionsmessungen auf der Deponie Rochy-Conde (F)	
	(Tregoures et al., 1999)	27
Tabelle 4-15	Emissionsmessungen auf der Deponie Braambergen (NL) (Scharff	
	et al., 2001)	28
Tabelle 4-16	Emissionsmessungen auf der Deponie Nashua (USA) mittels	
	Tracergas Methode (Czepiel et al., 2000)	29
Tabelle 4-17	Ergebnisse von Emissionsmessungen mittels Tracergas Methode	
	(Mosher et al., 1999)	30
Tabelle 4-18	Zusammenstellung der untersuchten Deponien in den Niederlanden	
	(Scharff et al., 2001)	31
Tabelle 4-19	Emissionswerte der untersuchten Deponien in den Niederlanden	
	(Scharff et al., 2001)	31
Tabelle 4-20	Emissionswerte der Deponie Falköping (S) (Galle et al., 2001)	32
Tabelle 4-21	Zusammenstellung der untersuchten Deponien in Schweden	
	(Samuelsson et al., 2001)	33
Tabelle 4-22	Emissionswerte der schwedischer Deponien	
	(Samuelsson et al., 2001)	34
Tabelle 4-23	Emissionsmessungen mittels Bilanzmethode an Deponien in den	
	Niederlanden (Oonk und Boom, 1995)	35

Tabelle 4-24	Oxidationsmessungen an den Deponien Nashua und "Landfill-A"	
	(USA) (Chanton et al., 1999)	37
Tabelle 4-25	Oxidationsmessungen an den Deponien Falköping und Hökhuvud	
	(S) (Börjesson et al., 2001)	38
Tabelle 4-26	Untersuchte Deponien in D und NL (Bergamaschi et al., 1998)	39
Tabelle 4-27	organische Kohlenstoffgesamtgehalte (TOC) von Rest- bzw.	
	Hausmüll	40
Tabelle 4-28	verwendete Parameterwerte für die Modellrechnungen	41
Tabelle 4-29	rechnerische Methanproduktion (Deponie Asten)	42
Tabelle 4-30	rechnerische Methanproduktion (Deponie Redlham)	43
Tabelle 4-31	Klasseneinteilung für den Vergleich von Mess- zu Rechendaten	
	(unter Annahme von 20% Methanoxidation)	47
Tabelle 5-1	Zusammenstellung der dokumentierten	
	Methanemissionsmessungen auf Deponien	55
Tabelle 5-2	Zusammenstellung der dokumentierten	
	Methanemissionsmessungen auf Deponien	56
Tabelle 5-3	Zusammenstellung der dokumentierten	
	Methanemissionsmessungen auf Deponien	57
Tabelle 8-1	rechnerische Methanproduktion (Deponie Gasselsdorf)	69
Tabelle 8-2	rechnerische Methanproduktion (Deponie A)	69
Tabelle 8-3	rechnerische Methanproduktion (Deponie_R)	69
Tabelle 8-4	rechnerische Methanproduktion (Deponie_D)	70
Tabelle 8-5	rechnerische Methanproduktion (Deponie Nashua)	71
Tabelle 8-6	rechnerische Methanproduktion (Deponie Landfill-A)	
Tabelle 8-7	rechnerische Methanproduktion (Deponie Landfill-B)	72
Tabelle 8-8	rechnerische Methanproduktion (Deponie Landfill-C)	73
Tabelle 8-9	rechnerische Methanproduktion (Deponie Landfill-D)	74
Tabelle 8-10	rechnerische Methanproduktion (Deponie Landfill-E)	
Tabelle 8-11	rechnerische Methanproduktion (Deponie Eakoning)	
Tabelle 8-12	rechnerische Methanproduktion (Deponie Rochy-Conde)	
Tabelle 8-13	rechnerische Methanproduktion (Deponie Roambergen)	
Tabelle 8-14	rechnerische Methanproduktion (Deponie Hollandse Brug)	
Tabelle 8-15	rechnerische Methanproduktion (Deponie Filborna)	
Tabelle 8-16	rechnerische Methanproduktion (Deponie Haghy)	80
Tabelle 8-17	rechnerische Methanproduktion (Deponie Häliestorn)	00
Tabelle 8-18	rechnerische Methanproduktion (Deponie 1-NI)	01 81
Tabelle 8-19	rechnerische Methanproduktion (Deponie 2-NL)	01 82
Tabelle 8-20	rechnerische Methanproduktion (Deponie 2-NL)	
Tabelle 8-21	rechnerische Methanproduktion (Deponie 5-NL)	
Tabelle 8-22	rechnerische Methanproduktion (Deponie 6-NL)	
Tabelle 8-22	rechnerische Methanproduktion (Deponie 7-NL)	02
Tabelle 8-24	rechnerische Methanproduktion (Deponie 8-NL)	83 84
Tabelle 8-25	rechnerische Methanproduktion (Deponie 9-NL)	07
Tabelle 8-26	rechnerische Methanproduktion (Deponie 10-NL)	85
Tabelle 8 27	rechnerische Methanproduktion (Deponie 10-NL)	85
Tabella 8.29	rechnerische Methannroduktion (Deponie 12 NL)	00 QC
Tabella 8.20	rechnerische Methannroduktion (Deponie 12 ML)	00 QC
Tabella 8 20	rechnerische Methannroduktion (Deponie 14 NI)	00 97
Tabella 8 21	rechnerische Methanproduktion (Deponie 15 ML)	07
1 abene 8-31	recimensche wiemanproduktion (Deponie 13-ML)	0/

Tabelle 8-32	rechnerische Methanproduktion (Deponie 16-NL)	
Tabelle 8-33	rechnerische Methanproduktion (Deponie 17-NL)	
Tabelle 8-34	rechnerische Methanproduktion (Deponie 18-NL)	
Tabelle 8-35	rechnerische Methanproduktion (Deponie 19-NL)	
Tabelle 8-36	rechnerische Methanproduktion (Deponie 20-NL)	
Tabelle 8-37	rechnerische Methanproduktion (Deponie 21-NL)	
Tabelle 8-38	rechnerische Methanproduktion (Deponie Zeeasterweg)	

7 LITERATUR

- Åkesson, M. & Nilsson, P., 1998. Material Dependence of Methane Production Rates in Landfills. Waste Management, 16(2): 108-118.
- Baccini, P., Belevi, H. & Lichtensteiger, T., 1992. Die Deponie in einer ökologisch orientierten Volkswirtschaft. Gaia, 1/92: 34-49.
- Baumeler, A., Brunner, P.H., Fehringer, R., Kisliakova, A. & Schachermayer, E., 1998. Reduktion von Treibhausgasen durch Optimierung der Abfallwirtschaft, Verband der Elektrizitätswerke Österreich (VEÖ), Wien.
- BAWP (1998): Bundes-Abfallwirtschaftsplan, Bundesabfallbericht 1998. Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (Hrsg.), Wien.
- Belevi, H. & Baccini, P., 1989. Long-Term Behaviour of Municipal Solid Waste Landfills. Waste Management & Research, 7, 43-56.
- Bendz, D., 1998. Generation of leachate and the flow regime in landfills. AFR-report 191, Lund, 27 s. pp.
- Bergamaschi, P. et al., 1998. Stable Isotopic Signatures (Delta-C-13, Delt-D) of Methane from European Landfill Sites. Journal of Geophysical Research, 103(D7): 8251-8265.
- Bogner, J. & Spokas, K., 1993. Landfill CH4: Rates, fates, and role in global carbon cycle. Chemosphere, 26(1-4): 369-386.
- Börjesson, G., Chanton, J.P. & Svensson, B.H., 2001. Methane Oxidation in Two Swedish Landfill Covers Measured with Carbon-13 to Carbon-12 Isotope Ratios. Journal of Environmental Quality, 30(2): 369-376.
- Börjesson, G., Danielsson, A. & Svensson, B.H., 2000. Methane Fluxes from a Swedish Landfill Determined by Geostatistical Treatment of Static Chamber Measurements. Environmental Science & Technology, 34: 4044-4050.
- Bozkurt, S., 1998. Simulation of the Long-Term Chemical Evolution in Waste Deposits. AFR-Report 192, Stockholm.
- Brunner, P.H. & Mönch, H., 1986. The Flux of Metals through Municipal Solid Waste Incinerators. Waste Management & Research, 4(105-119).
- Brunner, P.H., 1976. Beitrag zur Pyrolyse von Cellulose für die Herstellung von Aktivkohlen aus cellulosehaltigen Abfallstoffen. Dissertation Thesis, ETH-Zürich, Schweiz.
- Brunner, P.H., Döberl, G., Eder, M., Frühwirth, W., Huber, R., Hutterer, H., Pierrard, R., Schönbäck, W. & Wöginger, H.et al., 2001. Bewertung abfallwirtschaftlicher Maßnahmen mit dem Ziel der nachsorgefreien Deponie. Band 149, Umweltbundesamt GmbH Wien, Wien.
- Chanton, J.P., Rutkowski, C.M. & Mosher, B., 1999. Quantifying Methane Oxidation from Landfills Using Stable Isotope Analysis of Downwind Plumes. Environmental Science & Technology, 33(21): 3755-3760.
- Christensen T.H., Kjeldsen, P. & Lindhardt, B. (1996) Gas-generating processes in landfills. In T.H. Christensen, R. Cossu & R. Stegmann (Eds). Landfilling of waste: biogas. E&FN Spon, London, 27-44.
- Coleman, D.D., Risatti, J.B. & Schoell, M., 1981. Fractionation of carbon and hydrogen isotopes by methane-oxidizing bacteria. Geochimica et Cosmochimica Acta, 45(7): 1033-1037.
- Czepiel, P.M. et al., 1996. Landfill Methane Emissions Measured by Enclosure and Atmospheric Tracer Methods. Journal of Geophysical Research, 101(D11): 16711-16719.
- Czepiel, P.M. et al., 2000. The Short Term Influence of Atmospheric Pressure and Long Term Influence of Gas Recovery on Landfill Methane Emissions, First Intercontinental Landfill Research Symposia, Luela, Sweden.

- Czepiel, P.M., Mosher, B., Crill, P.M. & Harriss, R.C., 1996. Quantifying the Effect of Oxidation on Landfill Methane Emissions. Journal of Geophysical Research, 101(D11): 16721-16729.
- Dorn, E. & Rettenberger, G., 1987. Gasförmige Emissionen in den deponienahen Raum. Stuttgarter Berichte zur Abfallwirtschaft, Zeitgemäße Deponietechnik, II, 9-30 pp.
- Ehrig, H.-J., 1986. Untersuchungen zur Gasproduktion aus Hausmüll. Müll und Abfall, 5: 173-183.
- Ehrig, H.-J., 1989. Sickerwasser aus Hausmülldeponien Menge und Zusammensetzung. Müllhandbuch 4587.
- Farquhar, G.J. & Rovers, F.A., 1973. Gas production during refuse decomposition. Water, Air and Soil Pollution, 2(9): 483-495.
- Fehringer, R., Rechberger, H., Pesonen, H.-L. & Brunner, P.H., 1997. Auswirkungen unterschiedlicher Szenarien der thermischen Verwertung von Abfällen in Österreich (ASTRA), Technische Universität Wien, Institut für Wassergüte und Abfallwirtschaft, Wien.
- Fellner, J., Huber, R., Döberl, G. & Brunner, P.H., 2003. Hydraulics of MSW landfills and its implications for water flow modelling. In: T.H. Christensen, Cossu, R. & Stegmann, R. (Editor), Proceedings Sardinia 2003, Ninth International Waste Management and Landfill Symposium. CISA, S. Margherita di Pula.
- Fischer, C., 1999. Gas Emissions from Landfills An overview of issues and research needs. AFR-Report 264, Swedish Environmental Protection Agency, Stockholm.
- Flögl, W., 2002. Klimarelevanz der Deponien in Oberösterreich, Dr. Flögl Hydro Consulting Engineers, Linz.
- Forschungsgesellschaft technischer Umweltschutz, 1996. Emission gasförmiger Substanzen aus Mülldeponien, Bundesministerium für Umwelt, Jugend und Familie, Sektion 3, Wien.
- Fowler D. & Duyzer J.H., 1989. Micrometeorological techniques for the measurement of trace gas exchange. In: S.D.S. Andreae M.O. (Editor), Exchange of trace gases between terrestrial ecosystems and the atmosphere. John Wiley and Sons, pp. 189-207.
- Galle, B., Samuelsson, J., Svensson, B.H. & Borjesson, G., 2001. Measurements of Methane Emissions from Landfills Using a Time Correlation Tracer Method Based on FTIR Absorption Spectroscopy. Environmental Science & Technology, 35: 21-25.
- Hackl, A. & Mauschitz, G., 1998. Klimarelevanz der Abfallwirtschaft, BMUJF Bundesministerium für Umwelt, Jugend und Familie, Band 11/1998, Wien.
- Heyer, K.-U., 2003. Evaluierung und Erstabschätzung von Altablagerungen (EVVAPAS-SOLD), NÖ Landesakademie.
- Hoeks, J. and Oosthoek, J., 1991. Gaswinning uit afvalstortterreinen. Gas (Neth.), 101(563 568).
- Jones, H.A. & Nedwell, D.B., 1990. Soil Atmosphere Concentration Profiles and Methane Emission Rates in the Restoration Covers Above Landfill Sites: Equipment and Prelimnary Results. Waste Management & Research, 8(1): 21-31.
- Jungmeier, G., Schwaiger, H.P., Canella, L. & Spitzer, J., 1998. Möglichkeiten und Grenzen der Vermeidung von Treibhausgasemissionen durch thermische Abfallbehandlung. Endbericht Phase 2, Joanneum Research, Institut für Energieforschung, Graz.
- Klink, R. & Ham, R.K. (1982) Effects of moisture movement on methane production in solid waste samples. Resource Conservation, 8, 29-41
- Lagerkvist, A., 1997. Trends of LFG Utilisation in the Nordic Countries, 20th Annual Landfill Gas Symposium. SWANA, Monterey, California, pp. pp.185-192.
- Marticorena, B. et al., 1993. Prediction Rules for Biogas Valorisation in Municipal Solid Waste Landfills. Water Science and Technology, 27(2): 235-241.

- Morf, L. S., Ritter, E. & Brunner, P. H. "Online-Messung der Stoffbilanz auf der MVA Spittelau - Phase B". Technische Universität Wien, Institut für Wassergüte und Abfallwirtschaft, Wien (2003).
- Mosher, B. et al., 1999. Methane Emissions at Nine Landfill Sites in the Northeastern United States. Environmental Science & Technology, 33: 2088-2094.
- Oonk, H. & Boom, T., 1995. Landfill gas formation, recovery and emission. TNO-rapport 95-203.
- Oonk, H. & Boom, T., 2000. Landfill Gas Emission Measurements Using a Mass-Balance Method, First Intercontinental Landfill Research Symposia, Luela, Sweden.
- ÖWAV, 2002. Entwurf Regelblatt EPER Abschätzung von Emissionen in Luft und Wasser -Reststoff und Massenabfalldeponie, Wien.
- Raschke, C., 1987. Bodenverunreinigung durch Gasmigration. Stuttgarter Berichte zur Abfallwirtschaft, Zeitgemäße Deponietechnik, II, 97-105 pp.
- Reimann, D.O. & Hämmerli, H., 1995. Verbrennunngstechnik für Abfälle in Theorie und Praxis. Schriftreihe Umweltschutz, Bamberg.
- Rettenberger, G., 1982. Beeinflussung des Gashaushaltes durch externe Vorgänge. Veröffentlichungen des Instituts für Stadtbauwesen der TU Braunschweig, 377 - 392 pp.
- Rolston, D.E., 1986. Gas Flux. In: Methods of soil analysis, Part I. American Society of Agronomy, Madison, USA, 1103-1119 pp.
- Rosqvist, H. & Destouni, G., 2000. Solute transport through preferential pathways in municipal solid waste. Journal of Contaminant Hydrology, 46(1-2): 39-60.
- Samuelsson, J., Börjesson, G., Galle, B. & Svensson, B.H., 2001. The Swedish Landfill Methane Emission Project. In: T.H. Christensen, Cossu, R. & Stegmann, R. (Editor), Proceedings Sardinia 2001, Eighth International Waste Management and Landfill Symposium. CISA, Cagliari, pp. 485-494.
- Schachermayer, E., Bauer, G., Ritter, E. & Brunner, P.H., 1994. Messung der Güter- und Stoffbilanz einer Müllverbrennungsanlage. 56, Umweltbundesamtes Wien GmbH., Wien.
- Scharff, H., Oonk, H., Hensen, A., Van Rijn, D.M.M. & Pot, M.A., 2001. Emission Measurements as a Tool to Improve Methane Emission Estimates. In: T.H. Christensen, Cossu, R. & Stegmann, R. (Editor), Proceedings Sardinia 2001, Eighth International Waste Management and Landfill Symposium, Cagliari, pp. 505-514.
- Skutan, S. & Brunner, P.H., 2003. Stoffbilanzen mechanisch-biologischer Anlagen zur Behandlung von Restmüll (SEMBA) - 5. Zwischenbericht, Technische Universität Wien, Institut für Wassergüte und Abfallwirtschaft, Wien. Daten berechnet auf Basis des Prüfberichts Nr. 0304/79, Umweltbundesamt.
- Stegmann, R. & Spendlin, H.-H., 1987. Vorgänge in kommunalen Abfalldeponien Grundlagen der chemisch-physikalischen und biochemischen Prozesse. Deponie. Ablagerung von Abfällen. EF-Verlag, Berlin.
- Tabasaran, O. & Rettenberger, G., 1987. Grundlage zur Planung von Entgasungsanlagen, Müllhandbuch. Erich Schmidt Verlag, Berlin.
- Taramini, V., Budka, A., Poitel, D., Puglierin, L. & Bour, O., 2003. Determining whole Landfill Emission Rates from Geostatistical Models. In: T.H. Christensen, Cossu, R. & Stegmann, R. (Editor), Assessment of Landfill Gas Emissions through Different Types of Covers. CISA, S. Margherita di Pula.
- Tregoures, A. et al., 1999. Comparison of Seven Methods for Measuring Methane Flux at a Municipal Solid Waste Landfill Site. Waste Management, 17(6): 453-458.
- U. S. Environmental Protection Agengy, 2001. Municipal Solid Waste in The United States: 1999 Facts and Figures, [http://www.epa.gov/epaoswer/non-hw/muncpl/mswfinal.pdf]

- UBA, 2001. EPER-Berichtspflicht Eine Abschätzung möglicher Schwellenwertüberschreitungen in Österreich. BE-197, Wien.
- UBA, 2003. Bundesländer Luftschadstoff-Inventur 1990-2001. BE-185, Wien.
- Wiemer, K., 1998. Die klimarelevante Dimension der Abfallwirtschaft, Bio- und Restabfallbehandlung II - biologisch, mechanisch, thermisch. M.I.C. Baeza-Verlag, Witzhausen.

8 ANHANG

8.1 Tabellarische Zusammenstellung der berechneten Methanproduktionsverläufe

 Tabelle 8-1
 rechnerische Methanproduktion (Deponie Gasselsdorf)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1993	8.783	200	177.848	97.816	11
1994	8.162	200	329.351	181.143	21
1995	12.720	200	561.418	308.780	35
1996	27.044	200	1.065.566	586.061	67

 Tabelle 8-2
 rechnerische Methanproduktion (Deponie_A)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1991	20.000	200	404.982	222.740	25
1992	22.585	200	830.946	457.020	52
1993	19.487	200	1.161.195	638.657	73
1994	15.815	200	1.391.517	765.334	87
1995	16.940	200	1.626.788	894.733	102
1996	26.438	200	2.036.172	1.119.895	128
1997	27.452	200	2.434.395	1.338.917	153
1998	31.408	200	2.881.888	1.585.038	181
1999	33.664	200	3.340.414	1.837.228	210
2000	35.001	200	3.790.508	2.084.779	238
2001	35.607	200	4.218.019	2.319.910	265
2002	87.181	200	5.656.762	3.111.219	355
2003	78.654	200	6.811.441	3.746.293	428

Tabelle 8-3rechnerische Methanproduktion (Deponie_B)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1984	20.800	200	421.182	231.650	26
1985	20.800	200	809.752	445.364	51
1986	20.800	200	1.168.236	642.530	73
1987	20.800	200	1.498.963	824.429	94
1988	20.800	200	1.804.082	992.245	113
1989	60.000	200	2.879.341	1.583.638	181
1990	60.000	200	3.871.345	2.129.240	243
1991	60.000	200	4.786.540	2.632.597	301
1992	30.853	200	5.040.665	2.772.366	316
1993	25.489	200	5.166.499	2.841.575	324
1994	18.828	200	5.147.707	2.831.239	323
1995	22.784	200	5.210.491	2.865.770	327
1996	39.678	200	5.610.493	3.085.771	352
1997	44.466	200	6.076.468	3.342.057	382
1998	43.964	200	6.496.214	3.572.918	408
1999	36.445	200	6.731.197	3.702.158	423
2000	38.553	200	6.990.664	3.844.865	439
2001	48.241	200	7.426.216	4.084.419	466
2002	40.000	200	7.661.180	4.213.649	481
2003	30.000	200	7.675.459	4.221.503	482

		1			
Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1979	198.571	200	4.020.897	2.211.493	252
1980	198.571	200	7.730.461	4.251.754	485
1981	198.571	200	11.152.799	6.134.040	700
1982	198.571	200	14.310.151	7.870.583	898
1983	198.571	200	17.223.033	9.472.668	1.081
1984	198.571	200	19.910.375	10.950.706	1.250
1985	198.571	200	22.389.640	12.314.302	1.406
1986	198.571	200	24.676.939	13.572.316	1.549
1987	198.571	200	26.787.135	14.732.924	1.682
1988	198.571	200	28.733.942	15.803.668	1.804
1989	198.571	200	30.530.011	16.791.506	1.917
1990	198.571	200	32.187.013	17.702.857	2.021
1991	198.571	200	33.715.715	18.543.643	2.117
1992	198.571	200	35.126.052	19.319.329	2.205
1993			32.406.292	17.823.461	2.035
1994			29.897.119	16.443.415	1.877
1995			27.582.228	15.170.225	1.732
1996			25.446.575	13.995.616	1.598
1997			23.476.283	12.911.956	1.474
1998			21.658.548	11.912.201	1.360
1999			19.981.558	10.989.857	1.255
2000			18.434.414	10.138.928	1.157

 Tabelle 8-4
 rechnerische Methanproduktion (Deponie Rochester)

John	Müllmenge	abbaubarer Kablanstaffashalt	Deponiegas Duo duo báicon	Methan	Methan
Jain	[t/a]	[kg/t]	[Nm ³ /a]	[Nm ³ /a]	[Nm ³ /h]
1971	25.500	200	516.353	283.994	32
1972	34.000	200	1.164.842	640.663	73
1973	42.500	200	1.935.238	1.064.381	122
1974	51.000	200	2.818.100	1.549.955	177
1975	51.000	200	3.632.604	1.997.932	228
1976	59.500	200	4.556.159	2.505.888	286
1977	62.900	200	5.477.052	3.012.379	344
1978	66.300	200	6.395.488	3.517.519	402
1979	69.700	200	7.311.658	4.021.412	459
1980	68.000	200	8.122.467	4.467.357	510
1981	68.000	200	8.870.497	4.878.773	557
1982	72.250	200	9.646.666	5.305.666	606
1983	76.500	200	10.448.796	5.746.838	656
1984	80.750	200	11.274.877	6.201.182	708
1985	85.000	200	12.123.054	6.667.680	761
1986	89.250	200	12.991.618	7.145.390	816
1987	97.750	200	13.965.047	7.680.776	877
1988	110.500	200	15.121.281	8.316.705	949
1989	102.000	200	16.015.872	8.808.730	1.006
1990	102.000	200	16.841.196	9.262.658	1.057
1991	97.750	200	17.516.558	9.634.107	1.100
1992	97.750	200	18.139.627	9.976.795	1.139
1993	93.500	200	18.628.395	10.245.617	1.170
1994	93.500	200	19.079.317	10.493.625	1.198
1995	93.500	200	19.495.326	10.722.429	1.224
1996	93.500	200	19.879.123	10.933.518	1.248
1997	93.500	200	20.233.204	11.128.262	1.270
1998	93.500	200	20.559.869	11.307.928	1.291

 Tabelle 8-5
 rechnerische Methanproduktion (Deponie Nashua)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1962	162.857	200	3.297.714	1.813.743	207
1963	162.857	200	6.340.090	3.487.050	398
1964	162.857	200	9.146.900	5.030.795	574
1965	162.857	200	11.736.383	6.455.010	737
1966	162.857	200	14.125.365	7.768.951	887
1967	162.857	200	16.329.372	8.981.155	1.025
1968	162.857	200	18.362.726	10.099.499	1.153
1969	162.857	200	20.238.640	11.131.252	1.271
1970	162.857	200	21.969.305	12.083.118	1.379
1971	162.857	200	23.565.967	12.961.282	1.480
1972	162.857	200	25.039.002	13.771.451	1.572
1973	162.857	200	26.397.982	14.518.890	1.657
1974	162.857	200	27.651.737	15.208.456	1.736
1975	162.857	200	28.808.417	15.844.629	1.809
1976	162.857	200	29.875.536	16.431.545	1.876
1977	162.857	200	30.860.030	16.973.016	1.938
1978	162.857	200	31.768.296	17.472.563	1.995
1979	162.857	200	32.606.236	17.933.430	2.047
1980	162.857	200	33.379.295	18.358.612	2.096
1981	162.857	200	34.092.498	18.750.874	2.141
1982	162.857	200	34.750.478	19.112.763	2.182
1983	162.857	200	35.357.512	19.446.632	2.220
1984	162.857	200	35.917.545	19.754.649	2.255
1985	162.857	200	36.434.214	20.038.818	2.288
1986	162.857	200	36.910.879	20.300.983	2.317
1987	162.857	200	37.350.636	20.542.850	2.345
1988	162.857	200	37.756.344	20.765.989	2.371
1989	162.857	200	38.130.638	20.971.851	2.394
1990	162.857	200	38.475.951	21.161.773	2.416
1991	162.857	200	38.794.527	21.336.990	2.436
1992	162.857	200	39.088.436	21.498.640	2.454
1993	162.857	200	39.359.588	21.647.773	2.471
1994	162.857	200	39.609.745	21.785.360	2.487
1995	162.857	200	39.840.533	21.912.293	2.501
1996	162.857	200	40.053.451	22.029.398	2.515
1997			36.952.170	20.323.693	2.320
1998			34.091.016	18.750.059	2.140
1999			31.451.397	17.298.268	1.975
2000			29.016.160	15.958.888	1.822

 Tabelle 8-6
 rechnerische Methanproduktion (Deponie Landfill-A)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1973	334.615	200	6.775.667	3.726.617	425
1974	334.615	200	13.026.704	7.164.687	818
1975	334.615	200	18.793.732	10.336.553	1.180
1976	334.615	200	24.114.228	13.262.825	1.514
1977	334.615	200	29.022.765	15.962.521	1.822
1978	334.615	200	33.551.241	18.453.182	2.107
1979	334.615	200	37.729.083	20.750.996	2.369
1980	334.615	200	41.583.441	22.870.893	2.611
1981	334.615	200	45.139.362	24.826.649	2.834
1982	334.615	200	48.419.953	26.630.974	3.040
1983	334.615	200	51.446.532	28.295.593	3.230
1984	334.615	200	54.238.768	29.831.322	3.405
1985	334.615	200	56.814.805	31.248.143	3.567
1986	334.615	200	59.191.383	32.555.260	3.716
1987	334.615	200	61.383.945	33.761.170	3.854
1988	334.615	200	63.406.741	34.873.708	3.981
1989	334.615	200	65.272.915	35.900.103	4.098
1990	334.615	200	66.994.594	36.847.026	4.206
1991	334.615	200	68.582.965	37.720.631	4.306
1992	334.615	200	70.048.351	38.526.593	4.398
1993	334.615	200	71.400.274	39.270.151	4.483
1994	334.615	200	72.647.520	39.956.136	4.561
1995	334.615	200	73.798.194	40.589.007	4.633
1996	334.615	200	74.859.772	41.172.875	4.700
1997	334.615	200	75.839.154	41.711.535	4.762
1998	334.615	200	76.742.704	42.208.487	4.818

Tabelle 8-7rechnerische Methanproduktion (Deponie Landfill-B)

 Tabelle 8-8
 rechnerische Methanproduktion (Deponie Landfill-C)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1979	150.000	200	3.037.368	1.670.552	191
1980	150.000	200	5.839.557	3.211.756	367
1981	150.000	200	8.424.777	4.633.627	529
1982	150.000	200	10.809.826	5.945.404	679
1983	150.000	200	13.010.205	7.155.613	817
1984	150.000	200	15.040.211	8.272.116	944
1985	150.000	200	16.913.037	9.302.170	1.062
1986	150.000	200	18.640.853	10.252.469	1.170
1987	150.000	200	20.234.886	11.129.188	1.270
1988	150.000	200	21.705.496	11.938.023	1.363
1989	150.000	200	23.062.239	12.684.231	1.448
1990	150.000	200	24.313.930	13.372.662	1.527
1991	150.000	200	25.468.705	14.007.788	1.599
1992	150.000	200	26.534.068	14.593.737	1.666
1993	150.000	200	27.516.941	15.134.318	1.728
1994	150.000	200	28.423.712	15.633.041	1.785
1995	150.000	200	29.260.272	16.093.150	1.837
1996	150.000	200	30.032.059	16.517.633	1.886
1997	150.000	200	30.744.088	16.909.248	1.930
1998	150.000	200	31.400.985	17.270.542	1.972

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt	Deponiegas Produktion	Methan Produktion	Methan Produktion
1960	142.500	200	2.885.500	1.587.025	181
1961	142.500	200	5.547.579	3.051.169	348
1962	142.500	200	8.003.538	4.401.946	503
1963	142.500	200	10.269.335	5.648.134	645
1964	142.500	200	12.359.695	6.797.832	776
1965	142.500	200	14.288.201	7.858.510	897
1966	142.500	200	16.067.385	8.837.062	1.009
1967	142.500	200	17.708.810	9.739.846	1.112
1968	142.500	200	19.223.142	10.572.728	1.207
1969	142.500	200	20.620.221	11.341.122	1.295
1970	142.500	200	21.909.127	12.050.020	1.376
1971	142.500	200	23.098.234	12.704.029	1.450
1972	142.500	200	24.195.270	13.307.399	1.519
1973	142.500	200	25.207.365	13.864.051	1.583
1974	142.500	200	26.141.094	14.377.602	1.641
1975	142.500	200	27.002.526	14.851.389	1.695
1976	142.500	200	27.797.259	15.288.492	1.745
1977	142.500	200	28.530.456	15.691.751	1.791
1978	142.500	200	29.206.883	16.063.786	1.834
1979	142.500	200	29.830.936	16.407.015	1.873
1980	142.500	200	30.406.669	16.723.668	1.909
1981	142.500	200	30.937.823	17.015.803	1.942
1982	142.500	200	31.427.851	17.285.318	1.973
1983	142.500	200	31.879.937	17.533.966	2.002
1984	142.500	200	32.297.019	17.763.360	2.028
1985	142.500	200	32.681.807	17.974.994	2.052
1986	142.500	200	33.036.801	18.170.240	2.074
1987	142.500	200	33.364.308	18.350.369	2.095
1988	142.500	200	33.666.457	18.516.551	2.114
1989	142.500	200	33.945.211	18.669.866	2.131
1990	142.500	200	34.202.381	18.811.310	2.147
1991	142.500	200	34.439.639	18.941.802	2.162
1992	142.500	200	34.658.527	19.062.190	2.176
1993	142.500	200	34.860.466	19.173.256	2.189
1994	142.500	200	35.046.770	19.275.723	2.200
1995	142.500	200	35.218.648	19.370.256	2.211
1996	142.500	200	35.377.218	19.457.470	2.221
1997	142.500	200	35.523.510	19.537.931	2.230
1998	142.500	200	35.658.475	19.612.161	2.239
1999	142.500	200	35.782.990	19.680.644	2.247

 Tabelle 8-9
 rechnerische Methanproduktion (Deponie Landfill-D)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1960	92.500	200	1.873.044	1.030.174	118
1961	92.500	200	3.601.060	1.980.583	226
1962	92.500	200	5.195.279	2.857.403	326
1963	92.500	200	6.666.059	3.666.333	419
1964	92.500	200	8.022.960	4.412.628	504
1965	92.500	200	9.274.797	5.101.138	582
1966	92.500	200	10.429.706	5.736.338	655
1967	92.500	200	11.495.193	6.322.356	722
1968	92.500	200	12.478.180	6.862.999	783
1969	92.500	200	13.385.056	7.361.781	840
1970	92.500	200	14.221.714	7.821.943	893
1971	92.500	200	14.993.590	8.246.475	941
1972	92.500	200	15.705.702	8.638.136	986
1973	92.500	200	16.362.675	8.999.471	1.027
1974	92.500	200	16.968.780	9.332.829	1.065
1975	92.500	200	17.527.956	9.640.376	1.100
1976	92.500	200	18.043.835	9.924.109	1.133
1977	92.500	200	18.519.770	10.185.873	1.163
1978	92.500	200	18.958.854	10.427.370	1.190
1979	92.500	200	19.363.941	10.650.167	1.216
1980	92.500	200	19.737.662	10.855.714	1.239
1981	92.500	200	20.082.447	11.045.346	1.261
1982	92.500	200	20.400.535	11.220.294	1.281
1983	92.500	200	20.693.994	11.381.697	1.299
1984	92.500	200	20.964.732	11.530.602	1.316
1985	92.500	200	21.214.506	11.667.978	1.332
1986	92.500	200	21.444.941	11.794.717	1.346
1987	92.500	200	21.657.533	11.911.643	1.360
1988	92.500	200	21.853.665	12.019.516	1.372
1989	92.500	200	22.034.611	12.119.036	1.383
1990	92.500	200	22.201.546	12.210.850	1.394
1991	92.500	200	22.355.555	12.295.555	1.404
1992	92.500	200	22.497.640	12.373.702	1.413
1993	92.500	200	22.628.724	12.445.798	1.421
1994	92.500	200	22.749.658	12.512.312	1.428
1995	92.500	200	22.861.228	12.573.675	1.435
1996	92.500	200	22.964.159	12.630.287	1.442
1997	92.500	200	23.059.121	12.682.516	1.448
1998	92.500	200	23.146.729	12.730.701	1.453
1999	92.500	200	23.227.555	12.775.155	1.458

 Tabelle 8-10
 rechnerische Methanproduktion (Deponie Landfill-E)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1965	1.000	200	20.249	11.137	1
1966	2.000	200	59.180	32.549	4
1967	3.000	200	115.345	63.440	7
1968	3.000	200	167.161	91.939	10
1969	4.000	200	235.215	129.368	15
1970	4.000	200	297.999	163.899	19
1971	5.000	200	376.171	206.894	24
1972	5.000	200	448.290	246.559	28
1973	6.000	200	535.074	294.291	34
1974	6.000	200	615.139	338.326	39
1975	7.000	200	709.253	390.089	45
1976	7.000	200	796.081	437.844	50
1977	8.000	200	896.434	493.039	56
1978	8.000	200	989.018	543.960	62
1979	9.000	200	1.094.682	602.075	69
1980	9.000	200	1.192.164	655.690	75
1981	10.000	200	1.302.348	716.291	82
1982	10.500	200	1.414.124	777.768	89
1983	11.000	200	1.527.371	840.054	96
1984	11.500	200	1.641.974	903.086	103
1985	12.000	200	1.757.828	966.805	110
1986	12.500	200	1.874.836	1.031.160	118
1987	13.000	200	1.992.908	1.096.100	125
1988	13.500	200	2.111.963	1.161.580	133
1989	14.000	200	2.231.925	1.227.559	140
1990	14.500	200	2.352.722	1.293.997	148
1991	15.000	200	2.474.291	1.360.860	155
1992	15.500	200	2.596.572	1.428.114	163
1993	16.000	200	2.719.509	1.495.730	171
1994	16.500	200	2.843.052	1.563.678	179
1995	17.000	200	2.967.153	1.631.934	186
1996	17.500	200	3.091.770	1.700.474	194
1997	18.000	200	3.216.863	1.769.275	202
1998			2.967.786	1.632.282	186
1999			2.737.995	1.505.897	172
2000			2.525.996	1.389.298	159
2001			2.330.411	1.281.726	146

 Tabelle 8-11
 rechnerische Methanproduktion (Deponie Falköping)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1988	150.000	200	3.037.368	1.670.552	191
1989	150.000	200	5.839.557	3.211.756	367
1990	150.000	200	8.424.777	4.633.627	529
1991			7.772.458	4.274.852	488
1992			7.170.648	3.943.856	450
1993	150.000	200	9.652.803	5.309.042	606
1994	150.000	200	11.942.768	6.568.522	750
1995	150.000	200	14.055.425	7.730.484	882
1996			12.967.133	7.131.923	814
1997			11.963.107	6.579.709	751
1998			11.036.820	6.070.251	693
1999			10.182.255	5.600.240	639
2000			9.393.858	5.166.622	590

 Tabelle 8-12
 rechnerische Methanproduktion (Deponie Rochy-Conde)

 Tabelle 8-13
 rechnerische Methanproduktion (Deponie Braambergen)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1982	105.263	200	2.131.486	1.172.317	134
1983	105.263	200	4.097.935	2.253.864	257
1984	105.263	200	5.912.124	3.251.668	371
1985	105.263	200	7.585.843	4.172.214	476
1986	105.263	200	9.129.968	5.021.483	573
1987	105.263	200	10.554.534	5.804.994	663
1988	105.263	200	11.868.798	6.527.839	745
1989	105.263	200	13.081.300	7.194.715	821
1990	105.263	200	14.199.920	7.809.956	892
1991	105.263	200	15.231.927	8.377.560	956
1992	105.263	200	16.184.027	8.901.215	1.016
1993	105.263	200	17.062.407	9.384.324	1.071
1994	105.263	200	17.872.776	9.830.027	1.122
1995	105.263	200	18.620.399	10.241.219	1.169
1996	105.263	200	19.310.134	10.620.574	1.212
1997	105.263	200	19.946.464	10.970.555	1.252
1998	105.263	200	20.533.524	11.293.438	1.289
1999	105.263	200	21.075.129	11.591.321	1.323
2000	105.263	200	21.574.798	11.866.139	1.355
2001	105.263	200	22.035.779	12.119.678	1.384

		_			
Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1970	41.935	200	849.157	467.036	53
1971	41.935	200	1.632.564	897.910	103
1972	41.935	200	2.355.314	1.295.423	148
1973	41.935	200	3.022.102	1.662.156	190
1974	41.935	200	3.637.262	2.000.494	228
1975	41.935	200	4.204.790	2.312.635	264
1976	41.935	200	4.728.376	2.600.607	297
1977	41.935	200	5.211.421	2.866.282	327
1978	41.935	200	5.657.065	3.111.386	355
1979	41.935	200	6.068.203	3.337.512	381
1980	41.935	200	6.447.508	3.546.129	405
1981	41.935	200	6.797.443	3.738.594	427
1982	41.935	200	7.120.283	3.916.156	447
1983	41.935	200	7.418.127	4.079.970	466
1984	41.935	200	7.692.908	4.231.100	483
1985	41.935	200	7.946.414	4.370.528	499
1986	41.935	200	8.180.291	4.499.160	514
1987	41.935	200	8.396.060	4.617.833	527
1988	41.935	200	8.595.121	4.727.317	540
1989	41.935	200	8.778.770	4.828.323	551
1990	41.935	200	8.948.199	4.921.509	562
1991	41.935	200	9.104.509	5.007.480	572
1992	41.935	200	9.248.717	5.086.794	581
1993	41.935	200	9.381.759	5.159.967	589
1994	41.935	200	9.504.499	5.227.474	597
1995	41.935	200	9.617.736	5.289.755	604
1996	41.935	200	9.722.205	5.347.213	610
1997	41.935	200	9.818.585	5.400.222	616
1998	41.935	200	9.907.503	5.449.127	622
1999	41.935	200	9.989.536	5.494.245	627
2000	41.935	200	10.065.217	5.535.869	632
2001			9.285.882	5.107.235	583
2002			8.566.889	4.711.789	538

 Tabelle 8-14
 rechnerische Methanproduktion (Deponie Hollandse Brug)

	r			1	
Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1970	296.000	200	5.993.740	3.296.557	376
1971	296.000	200	11.523.393	6.337.866	724
1972	296.000	200	16.624.892	9.143.691	1.044
1973	296.000	200	21.331.390	11.732.265	1.339
1974	296.000	200	25.673.471	14.120.409	1.612
1975	296.000	200	29.679.350	16.323.643	1.863
1976	296.000	200	33.375.060	18.356.283	2.095
1977	296.000	200	36.784.616	20.231.539	2.310
1978	296.000	200	39.930.176	21.961.597	2.507
1979	296.000	200	42.832.179	23.557.698	2.689
1980	296.000	200	45.509.484	25.030.216	2.857
1981	296.000	200	47.979.489	26.388.719	3.012
1982	296.000	200	50.258.245	27.642.035	3.155
1983	296.000	200	52.360.561	28.798.308	3.287
1984	296.000	200	54.300.097	29.865.053	3.409
1985	296.000	200	56.089.458	30.849.202	3.522
1986	296.000	200	57.740.271	31.757.149	3.625
1987	296.000	200	59.263.263	32.594.795	3.721
1988	296.000	200	60.668.333	33.367.583	3.809
1989	296.000	200	61.964.610	34.080.536	3.890
1990	296.000	200	63.160.519	34.738.285	3.966
1991	296.000	200	64.263.829	35.345.106	4.035
1992	296.000	200	65.281.713	35.904.942	4.099
1993	296.000	200	66.220.782	36.421.430	4.158
1994	296.000	200	67.087.141	36.897.928	4.212
1995	296.000	200	67.886.419	37.337.531	4.262
1996	59.400	200	63.832.868	35.108.078	4.008
1997	59.400	200	60.093.178	33.051.248	3.773
1998	59.400	200	56.643.047	31.153.676	3.556
1999	59.400	200	53.460.054	29.403.030	3.357
2000	59.400	200	50.523.517	27.787.934	3.172
2001			47.814.350	26.297.893	3.002
2002			44.112.154	24.261.684	2.770

 Tabelle 8-15
 rechnerische Methanproduktion (Deponie Filborna)

		abbaubarer	Deponiegas	Methan	Methan
Jahr	Müllmenge [t/a]	Kohlenstoffgehalt [kg/t]	Produktion [Nm ³ /a]	Produktion [Nm ³ /a]	Produktion [Nm ³ /h]
1968	71.429	200	1.446.366	795.501	91
1969	71.429	200	2.780.741	1.529.408	175
1970	71.429	200	4.011.798	2.206.489	252
1971	71.429	200	5.147.536	2.831.145	323
1972	71.429	200	6.195.336	3.407.435	389
1973	71.429	200	7.162.005	3.939.103	450
1974	71.429	200	8.053.827	4.429.605	506
1975	71.429	200	8.876.597	4.882.128	557
1976	71.429	200	9.635.660	5.299.613	605
1977	71.429	200	10.335.950	5.684.773	649
1978	71.429	200	10.982.018	6.040.110	690
1979	71.429	200	11.578.062	6.367.934	727
1980	71.429	200	12.127.955	6.670.375	761
1981	71.429	200	12.635.270	6.949.399	793
1982	71.429	200	13.103.305	7.206.818	823
1983	71.429	200	13.535.101	7.444.305	850
1984	71.429	200	13.933.463	7.663.405	875
1985	71.429	200	14.300.981	7.865.539	898
1986	71.429	200	14.640.042	8.052.023	919
1987	71.429	200	14.952.850	8.224.067	939
1988	71.429	200	15.241.438	8.382.791	957
1989	71.429	200	15.507.681	8.529.224	974
1990	71.429	200	15.753.309	8.664.320	989
1991	71.429	200	15.979.919	8.788.955	1.003
1992	71.429	200	16.188.982	8.903.940	1.016
1993	71.429	200	16.381.858	9.010.022	1.029
1994	71.429	200	16.559.800	9.107.890	1.040
1995	71.429	200	16.723.964	9.198.180	1.050
1996			15.429.051	8.485.978	969
1997			14.234.402	7.828.921	894
1998			13.132.252	7.222.739	825
1999			12.115.441	6.663.492	761
2000			11.177.360	6.147.548	702
2001			10.311.913	5.671.552	647
2002			9.513.476	5.232.412	597

 Tabelle 8-16
 rechnerische Methanproduktion (Deponie Hagby)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1975	22.222	200	449.980	247.489	28
1976	22.222	200	865.120	475.816	54
1977	22.222	200	1.248.115	686.463	78
1978	22.222	200	1.601.456	880.801	101
1979	22.222	200	1.927.438	1.060.091	121
1980	22.222	200	2.228.179	1.225.499	140
1981	22.222	200	2.505.635	1.378.099	157
1982	22.222	200	2.761.608	1.518.884	173
1983	22.222	200	2.997.761	1.648.769	188
1984	22.222	200	3.215.629	1.768.596	202
1985	22.222	200	3.416.628	1.879.145	215
1986	22.222	200	3.602.064	1.981.135	226
1987	22.222	200	3.773.142	2.075.228	237
1988	22.222	200	3.930.973	2.162.035	247
1989	22.222	200	4.076.584	2.242.121	256
1990	22.222	200	4.210.920	2.316.006	264
1991	22.222	200	4.334.855	2.384.170	272
1992	22.222	200	4.449.194	2.447.057	279
1993	22.222	200	4.554.680	2.505.074	286
1994	22.222	200	4.651.998	2.558.599	292
1995	22.222	200	4.741.781	2.607.979	298
1996	22.222	200	4.824.612	2.653.537	303
1997	22.222	200	4.901.029	2.695.566	308
1998	22.222	200	4.971.530	2.734.342	312
1999	22.222	200	5.036.572	2.770.115	316
2000	22.222	200	5.096.578	2.803.118	320
2001	22.222	200	5.151.938	2.833.566	323

 Tabelle 8-17
 rechnerische Methanproduktion (Deponie Häljestorp)

 Tabelle 8-18
 rechnerische Methanproduktion (Deponie 1-NL)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1990	53.764	200	1.088.674	598.771	68
1991	59.686	200	2.212.968	1.217.133	139
1992	57.351	200	3.202.929	1.761.611	201
1993	58.972	200	4.149.062	2.281.984	261
1994	54.972	200	4.940.940	2.717.517	310

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1989	236.665	200	4.792.258	2.635.742	301
1990	236.665	200	9.213.458	5.067.402	578
1991	200.025	200	12.550.404	6.902.722	788
1992	125.000	200	14.109.784	7.760.381	886
1993	125.000	200	15.548.424	8.551.633	976
1994	125.000	200	16.875.671	9.281.619	1.060

Tabelle 8-19rechnerische Methanproduktion (Deponie 2-NL)

 Tabelle 8-20
 rechnerische Methanproduktion (Deponie 3-NL)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1988	53.712	200	1.087.621	598.191	68
1989	121.618	200	3.466.065	1.906.336	218
1990	123.929	200	5.707.146	3.138.930	358
1991	126.667	200	7.830.145	4.306.580	492
1992	106.343	200	9.377.220	5.157.471	589
1993	95.000	200	10.574.822	5.816.152	664
1994	95.000	200	11.679.695	6.423.832	733

 Tabelle 8-21
 rechnerische Methanproduktion (Deponie 5-NL)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1985	406.000	200	8.221.143	4.521.629	516
1986	365.000	200	14.975.520	8.236.536	940
1987	355.000	200	21.004.425	11.552.434	1.319
1988	414.000	200	27.761.218	15.268.670	1.743
1989	415.000	200	34.015.092	18.708.300	2.136
1990	405.000	200	39.582.245	21.770.235	2.485
1991	387.000	200	44.353.858	24.394.622	2.785
1992	390.000	200	48.816.759	26.849.218	3.065
1993	360.000	200	52.326.631	28.779.647	3.285
1994	360.000	200	55.564.738	30.560.606	3.489

 Tabelle 8-22
 rechnerische Methanproduktion (Deponie 6-NL)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1985	406.000	200	8.221.143	4.521.629	516
1986	365.000	200	14.975.520	8.236.536	940
1987	355.000	200	21.004.425	11.552.434	1.319
1988	414.000	200	27.761.218	15.268.670	1.743
1989	415.000	200	34.015.092	18.708.300	2.136
1990	405.000	200	39.582.245	21.770.235	2.485
1991	387.000	200	44.353.858	24.394.622	2.785
1992	390.000	200	48.816.759	26.849.218	3.065
1993	360.000	200	52.326.631	28.779.647	3.285
1994	360.000	200	55.564.738	30.560.606	3.489

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1970	20.900	200	423.207	232.764	27
1971	20.900	200	813.645	447.505	51
1972	20.900	200	1.173.852	645.619	74
1973	20.900	200	1.506.169	828.393	95
1974	20.900	200	1.812.755	997.015	114
1975	20.900	200	2.095.603	1.152.582	132
1976	20.900	200	2.356.550	1.296.102	148
1977	20.900	200	2.597.292	1.428.511	163
1978	20.900	200	2.819.394	1.550.667	177
1979	20.900	200	3.024.299	1.663.365	190
1980	88.000	200	4.572.055	2.514.630	287
1981	67.000	200	5.574.738	3.066.106	350
1982	67.000	200	6.499.785	3.574.882	408
1983	67.000	200	7.353.207	4.044.264	462
1984	67.000	200	8.140.550	4.477.302	511
1985	67.000	200	8.866.930	4.876.811	557
1986	158.000	200	11.379.737	6.258.855	714
1987	211.000	200	14.771.185	8.124.152	927
1988	211.000	200	17.900.037	9.845.020	1.124
1989	107.000	200	18.680.719	10.274.395	1.173
1990	257.000	200	22.438.321	12.341.077	1.409
1991	150.000	200	23.738.322	13.056.077	1.490
1992	150.000	200	24.937.666	13.715.716	1.566
1993	150.000	200	26.044.146	14.324.280	1.635
1994	150.000	200	27.064.953	14.885.724	1.699

 Tabelle 8-23
 rechnerische Methanproduktion (Deponie 7-NL)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1969	730.000	200	14.781.858	8.130.022	928
1970	19.000	200	14.022.053	7.712.129	880
1971	53.000	200	14.009.549	7.705.252	880
1972	110.000	200	15.152.213	8.333.717	951
1973	174.000	200	17.502.345	9.626.290	1.099
1974	243.000	200	21.067.700	11.587.235	1.323
1975	266.000	200	24.822.724	13.652.498	1.559
1976	376.000	200	30.514.405	16.782.923	1.916
1977	167.000	200	31.533.322	17.343.327	1.980
1978	0	200	29.091.741	16.000.458	1.827
1979	319.000	200	33.298.679	18.314.273	2.091
1980	479.000	200	40.419.738	22.230.856	2.538
1981	456.000	200	46.523.695	25.588.032	2.921
1982	403.000	200	51.081.827	28.095.005	3.207
1983	526.000	200	57.777.671	31.777.719	3.628
1984	581.000	200	65.068.767	35.787.822	4.085
1985	600.000	200	72.180.058	39.699.032	4.532
1986	422.000	200	75.136.388	41.325.013	4.717
1987	395.000	200	77.317.087	42.524.398	4.854
1988	479.000	200	81.029.864	44.566.425	5.087
1989	555.000	200	85.994.099	47.296.755	5.399
1990	554.000	200	90.553.711	49.804.541	5.685
1991	654.000	200	96.785.192	53.231.855	6.077
1992	500.000	200	99.415.812	54.678.697	6.242
1993	500.000	200	101.842.748	56.013.511	6.394
1994	500.000	200	104.081.770	57.244.973	6.535

 Tabelle 8-24
 rechnerische Methanproduktion (Deponie 8-NL)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1976	36.665	200	742.434	408.339	47
1977	36.665	200	1.427.382	785.060	90
1978	36.665	200	2.059.296	1.132.613	129
1979	36.665	200	2.642.282	1.453.255	166
1980	36.665	200	3.180.128	1.749.070	200
1981	36.665	200	3.676.329	2.021.981	231
1982	36.665	200	4.134.110	2.273.761	260
1983	36.665	200	4.556.446	2.506.045	286
1984	36.665	200	4.946.081	2.720.344	311
1985	36.665	200	5.305.547	2.918.051	333
1986	36.665	200	5.637.180	3.100.449	354
1987	36.665	200	5.943.135	3.268.724	373
1988	36.665	200	6.225.401	3.423.970	391
1989			5.743.377	3.158.857	361
1990			5.298.675	2.914.271	333
1991			4.888.406	2.688.624	307
1992			4.509.904	2.480.447	283
1993			4.160.709	2.288.390	261
1994			3.838.551	2.111.203	241
1995			3.541.337	1.947.736	222
1996			3.267.137	1.796.925	205

Tabelle 8-25rechnerische Methanproduktion (Deponie 9-NL)

 Tabelle 8-26
 rechnerische Methanproduktion (Deponie 10-NL)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1987	213.700	200	4.327.237	2.379.980	272
1988	50.000	200	5.004.641	2.752.553	314
1989	59.525	200	5.822.468	3.202.357	366
1990	55.190	200	6.489.191	3.569.055	407
1991	57.549	200	7.152.059	3.933.633	449
1992	67.430	200	7.963.684	4.380.026	500
1993	55.799	200	8.476.948	4.662.321	532
1994			7.820.590	4.301.324	491
1995			7.215.053	3.968.279	453
1996			6.656.401	3.661.021	418

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1988	220.378	200	4.462.461	2.454.353	280
1989	390.759	200	12.029.465	6.616.206	755
1990	450.224	200	20.214.680	11.118.074	1.269
1991	452.167	200	27.805.471	15.293.009	1.746
1992	480.759	200	35.387.480	19.463.114	2.222
1993	416.532	200	41.081.884	22.595.036	2.579
1994			37.900.972	20.845.535	2.380
1995			34.966.354	19.231.495	2.195
1996			32.258.959	17.742.428	2.025

Tabelle 8-27rechnerische Methanproduktion (Deponie 11-NL)

 Tabelle 8-28
 rechnerische Methanproduktion (Deponie 12-NL)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1986	1.750.000	200	35.435.961	19.489.778	2.225
1987	1.750.000	200	68.128.165	37.470.491	4.277
1988	1.750.000	200	98.289.059	54.058.983	6.171
1989	1.750.000	200	126.114.639	69.363.051	7.918
1990	1.750.000	200	151.785.723	83.482.147	9.530
1991	1.750.000	200	175.469.131	96.508.022	11.017
1992			161.882.807	89.035.544	10.164
1993			149.348.452	82.141.649	9.377
1994			137.784.615	75.781.538	8.651
1995			127.116.149	69.913.882	7.981
1996			117.273.727	64.500.550	7.363

 Tabelle 8-29
 rechnerische Methanproduktion (Deponie 13-NL)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1987	30.319	200	613.933	337.663	39
1988	64.054	200	1.863.434	1.024.889	117
1989	68.397	200	3.104.130	1.707.272	195
1990	155.156	200	6.005.554	3.303.055	377
1991			5.540.553	3.047.304	348
1992			5.111.556	2.811.356	321
1993			4.715.775	2.593.676	296
1994			4.350.640	2.392.852	273
1995			4.013.776	2.207.577	252
1996			3.702.995	2.036.647	232

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1981	50.000	200	1.012.456	556.851	64
1982	37.500	200	1.693.405	931.373	106
1983	37.500	200	2.321.629	1.276.896	146
1984	37.500	200	2.901.211	1.595.666	182
1985	37.500	200	3.435.916	1.889.754	216
1986	37.500	200	3.929.220	2.161.071	247
1987	38.500	200	4.404.577	2.422.517	277
1988	43.500	200	4.944.374	2.719.406	310
1989	69.813	200	5.975.190	3.286.354	375
1990			5.512.539	3.031.897	346
1991			5.085.711	2.797.141	319
1992			4.691.932	2.580.563	295
1993			4.328.642	2.380.753	272
1994			3.993.482	2.196.415	251
1995			3.684.272	2.026.350	231
1996			3.399.004	1.869.452	213

Tabelle 8-30rechnerische Methanproduktion (Deponie 14-NL)

 Tabelle 8-31
 rechnerische Methanproduktion (Deponie 15-NL)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1985	10.757	200	217.820	119.801	14
1986	240.048	200	5.061.715	2.783.943	318
1987	324.318	200	11.236.948	6.180.321	706
1988	43.660	200	11.250.964	6.188.030	706
1989			10.379.818	5.708.900	652
1990			9.576.123	5.266.868	601
1991			8.834.658	4.859.062	555
1992			8.150.603	4.482.831	512
1993			7.519.513	4.135.732	472
1994			6.937.288	3.815.508	436
1995			6.400.144	3.520.079	402
1996			5.904.590	3.247.524	371

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1965	18.500	200	374.609	206.035	24
1966	18.500	200	720.212	396.117	45
1967	18.500	200	1.039.056	571.481	65
1968	18.500	200	1.333.212	733.267	84
1969	18.500	200	1.604.592	882.526	101
1970	18.500	200	1.854.959	1.020.228	116
1971	18.500	200	2.085.941	1.147.268	131
1972	18.500	200	2.299.039	1.264.471	144
1973	18.500	200	2.495.636	1.372.600	157
1974	18.500	200	2.677.011	1.472.356	168
1975	18.500	200	2.844.343	1.564.389	179
1976	18.500	200	2.998.718	1.649.295	188
1977	18.500	200	3.141.140	1.727.627	197
1978	18.500	200	3.272.535	1.799.894	205
1979	18.500	200	3.393.756	1.866.566	213
1980	18.500	200	3.505.591	1.928.075	220
1981	18.500	200	3.608.767	1.984.822	227
1982	18.500	200	3.703.954	2.037.175	233
1983	18.500	200	3.791.771	2.085.474	238
1984	18.500	200	3.872.788	2.130.033	243
1985	18.500	200	3.947.532	2.171.143	248
1986	18.500	200	4.016.489	2.209.069	252
1987	18.500	200	4.080.107	2.244.059	256
1988	18.500	200	4.138.799	2.276.339	260
1989			3.818.338	2.100.086	240
1990			3.522.689	1.937.479	221
1991			3.249.932	1.787.463	204
1992			2.998.295	1.649.062	188
1993			2.766.141	1.521.378	174
1994			2.551.963	1.403.579	160
1995			2.354.368	1.294.902	148
1996			2.172.073	1.194.640	136

 Tabelle 8-32
 rechnerische Methanproduktion (Deponie 16-NL)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1974	18.800	200	380.683	209.376	24
1975	19.600	200	748.090	411.450	47
1976	20.400	200	1.103.249	606.787	69
1977	21.200	200	1.447.107	795.909	91
1978	22.000	200	1.780.540	979.297	112
1979	22.900	200	2.106.381	1.158.509	132
1980	23.800	200	2.425.216	1.333.869	152
1981	24.800	200	2.739.613	1.506.787	172
1982	25.800	200	3.049.916	1.677.454	191
1983	26.800	200	3.356.442	1.846.043	211
1984	27.900	200	3.661.508	2.013.829	230
1985	29.000	200	3.965.227	2.180.875	249
1986	30.200	200	4.269.728	2.348.351	268
1987	31.400	200	4.574.952	2.516.223	287
1988	32.700	200	4.882.866	2.685.576	307
1989			4.504.793	2.477.636	283
1990			4.155.993	2.285.796	261
1991			3.834.200	2.108.810	241
1992			3.537.324	1.945.528	222
1993			3.263.434	1.794.889	205
1994			3.010.751	1.655.913	189
1995			2.777.633	1.527.698	174
1996			2.562.565	1.409.410	161

Tabelle 8-33rechnerische Methanproduktion (Deponie 17-NL)

 Tabelle 8-34
 rechnerische Methanproduktion (Deponie 18-NL)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1978	142.000	200	2.875.375	1.581.456	181
1979	142.000	200	5.528.114	3.040.463	347
1980	142.000	200	7.975.455	4.386.500	501
1981	142.000	200	10.233.302	5.628.316	643
1982	142.000	200	12.316.327	6.773.980	773
1983	142.000	200	14.238.067	7.830.937	894
1984	142.000	200	16.011.009	8.806.055	1.005
1985			14.771.299	8.124.214	927
1986			13.627.578	7.495.168	856
1987			12.572.414	6.914.828	789
1988			11.598.950	6.379.423	728
1989			10.700.860	5.885.473	672
1990			9.872.308	5.429.769	620
1991			9.107.909	5.009.350	572
1992			8.402.697	4.621.483	528
1993			7.752.088	4.263.648	487
1994			7.151.855	3.933.520	449
1995			6.598.097	3.628.953	414
1996			6.087.216	3.347.969	382

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1972	10.800	200	218.691	120.280	14
1973	10.800	200	420.448	231.246	26
1974	24.000	200	873.872	480.630	55
1975	24.000	200	1.292.189	710.704	81
1976	20.000	200	1.597.119	878.415	100
1977	23.200	200	1.943.236	1.068.780	122
1978	33.500	200	2.471.119	1.359.116	155
1979	37.500	200	3.039.126	1.671.519	191
1980	44.000	200	3.694.772	2.032.125	232
1981			3.408.691	1.874.780	214
1982			3.144.761	1.729.619	197
1983			2.901.267	1.595.697	182
1984			2.676.626	1.472.144	168
1985			2.469.378	1.358.158	155
1986			2.278.178	1.252.998	143
1987			2.101.782	1.155.980	132
1988			1.939.044	1.066.474	122
1989			1.788.907	983.899	112
1990			1.650.394	907.717	104
1991			1.522.606	837.434	96
1992			1.404.713	772.592	88
1993			1.295.948	712.772	81
1994			1.195.605	657.583	75
1995			1.103.031	606.667	69
1996			1.017.625	559.694	64

Tabelle 8-35rechnerische Methanproduktion (Deponie 19-NL)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1970	131.000	200	2.652.635	1.458.949	167
1971	131.000	200	5.099.880	2.804.934	320
1972	131.000	200	7.357.638	4.046.701	462
1973	149.000	200	9.805.066	5.392.786	616
1974	137.000	200	11.820.003	6.501.002	742
1975	163.000	200	14.205.404	7.812.972	892
1976	62.000	200	14.360.945	7.898.520	902
1977	134.000	200	15.962.380	8.779.309	1.002
1978	159.000	200	17.946.045	9.870.325	1.127
1979	174.000	200	20.079.856	11.043.921	1.261
1980	179.000	200	22.149.694	12.182.332	1.391
1981	141.500	200	23.299.925	12.814.959	1.463
1982	141.000	200	24.350.971	13.393.034	1.529
1983	141.000	200	25.320.636	13.926.350	1.590
1984	150.000	200	26.397.463	14.518.605	1.657
1985	150.000	200	27.390.914	15.065.002	1.720
1986	75.000	200	26.788.758	14.733.817	1.682
1987			24.714.543	13.592.999	1.552
1988			22.800.931	12.540.512	1.432
1989			21.035.488	11.569.518	1.321
1990			19.406.740	10.673.707	1.218
1991			17.904.104	9.847.257	1.124
1992			16.517.814	9.084.798	1.037
1993			15.238.864	8.381.375	957
1994			14.058.940	7.732.417	883
1995			12.970.377	7.133.707	814
1996			11.966.099	6.581.354	751

 Tabelle 8-36
 rechnerische Methanproduktion (Deponie 20-NL)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1974	17.316	200	350.634	192.849	22
1975	23.400	200	797.314	438.523	50
1976	27.612	200	1.294.698	712.084	81
1977	27.300	200	1.747.252	960.989	110
1978	39.000	200	2.401.681	1.320.924	151
1979	81.432	200	3.864.648	2.125.557	243
1980	90.870	200	5.405.452	2.972.998	339
1981	79.638	200	6.599.515	3.629.733	414
1982	68.250	200	7.470.526	4.108.789	469
1983	68.562	200	8.280.414	4.554.228	520
1984	70.200	200	9.060.762	4.983.419	569
1985	70.200	200	9.780.688	5.379.379	614
1986	70.200	200	10.444.872	5.744.679	656
1987	70.200	200	11.057.628	6.081.696	694
1988	25.000	200	10.707.680	5.889.224	672
1989			9.878.600	5.433.230	620
1990			9.113.714	5.012.543	572
1991			8.408.052	4.624.429	528
1992			7.757.029	4.266.366	487
1993			7.156.413	3.936.027	449
1994			6.602.302	3.631.266	415
1995			6.091.095	3.350.102	382
1996			5.619.470	3.090.709	353

 Tabelle 8-37
 rechnerische Methanproduktion (Deponie 21-NL)

Jahr	Müllmenge [t/a]	abbaubarer Kohlenstoffgehalt [kg/t]	Deponiegas Produktion [Nm³/a]	Methan Produktion [Nm³/a]	Methan Produktion [Nm³/h]
1980	93.750	200	1.898.355	1.044.095	119
1981	93.750	200	3.649.723	2.007.348	229
1982	93.750	200	5.265.485	2.896.017	331
1983	93.750	200	6.756.141	3.715.878	424
1984	93.750	200	8.131.378	4.472.258	511
1985	93.750	200	9.400.132	5.170.073	590
1986	93.750	200	10.570.648	5.813.857	664
1987	93.750	200	11.650.533	6.407.793	731
1988	93.750	200	12.646.804	6.955.742	794
1989	93.750	200	13.565.935	7.461.264	852
1990	93.750	200	14.413.899	7.927.644	905
1991	93.750	200	15.196.206	8.357.914	954
1992	93.750	200	15.917.941	8.754.868	999
1993	93.750	200	16.583.793	9.121.086	1.041
1994	93.750	200	17.198.088	9.458.948	1.080
1995	93.750	200	17.764.820	9.770.651	1.115
1996			16.389.315	9.014.123	1.029
1997			15.120.314	8.316.173	949
1998			13.949.570	7.672.263	876
1999			12.869.474	7.078.211	808
2000			11.873.009	6.530.155	745
2001			10.953.699	6.024.534	688

 Tabelle 8-38
 rechnerische Methanproduktion (Deponie Zeeasterweg)

8.2 Graphische Gegenüberstellung der berechneten und gemessenen Methanproduktion

Die Modellrechungen wurden mit Hilfe der Methode von Tabasaran-Rettenberger (1987) durchgeführt, wobei die dargestellten Kurvenverläufe auf folgenden Eingangsparametern: $TOC_{abb}=200 \text{ g/kg FS}$, T=30°C, k=0,035a-1 beruhen

Abbildung 8-1 Vergleich Messdaten und Rechendaten (Deponie Gasselsdorf)

Abbildung 8-2 Vergleich Messdaten und Rechendaten (Deponie_A)

Abbildung 8-3 Vergleich Messdaten und Rechendaten (Deponie_B)

Abbildung 8-4 Vergleich Messdaten und Rechendaten (Deponie Rochester)

Abbildung 8-5 Vergleich Messdaten und Rechendaten (Deponie Nashua)

Vergleich Messdaten und Rechendaten (Deponie Landfill-A)

Abbildung 8-7 Vergleich Messdaten und Rechendaten (Deponie Landfill-B)

Abbildung 8-8 Vergleich Messdaten und Rechendaten (Deponie Landfill-C)

Vergleich Messdaten und Rechendaten (Deponie Landfill-D)

Abbildung 8-10 Vergleich Messdaten und Rechendaten (Deponie Landfill-E)

Abbildung 8-11 Vergleich Messdaten und Rechendaten (Deponie Falköping)

Abbildung 8-12 Vergleich Messdaten und Rechendaten (Deponie Rochy-Conde)

Abbildung 8-13 Vergleich Messdaten und Rechendaten (Deponie Braambergen)

Abbildung 8-14 Vergleich Messdaten und Rechendaten (Deponie Hollandse Brug)

Abbildung 8-15 Vergleich Messdaten und Rechendaten (Deponie Filborna)

Abbildung 8-16 Vergleich Messdaten und Rechendaten (Deponie Hollandse Brug)

Abbildung 8-17 Vergleich Messdaten und Rechendaten (Deponie Häljestorp)

Abbildung 8-18 Vergleich Messdaten und Rechendaten (Deponie 1-NL)

Abbildung 8-19 Vergleich Messdaten und Rechendaten (Deponie 2-NL)

Abbildung 8-20 Vergleich Messdaten und Rechendaten (Deponie 3-NL)

Abbildung 8-21 Vergleich Messdaten und Rechendaten (Deponie 5-NL)

Abbildung 8-22 Vergleich Messdaten und Rechendaten (Deponie 6-NL)

Abbildung 8-23 Vergleich Messdaten und Rechendaten (Deponie 7-NL)

Abbildung 8-24 Vergleich Messdaten und Rechendaten (Deponie 8-NL)

Abbildung 8-25 Vergleich Messdaten und Rechendaten (Deponie 9-NL)

Abbildung 8-26 Vergleich Messdaten und Rechendaten (Deponie 10-NL)

Abbildung 8-27 Vergleich Messdaten und Rechendaten (Deponie 11-NL)

Abbildung 8-28 Vergleich Messdaten und Rechendaten (Deponie 13-NL)

Abbildung 8-29 Vergleich Messdaten und Rechendaten (Deponie 14-NL)

Abbildung 8-30 Vergleich Messdaten und Rechendaten (Deponie 15-NL)

Abbildung 8-31 Vergleich Messdaten und Rechendaten (Deponie 16-NL)

Abbildung 8-32 Vergleich Messdaten und Rechendaten (Deponie 17-NL)

Abbildung 8-33 Vergleich Messdaten und Rechendaten (Deponie 18-NL)

Abbildung 8-34 Vergleich Messdaten und Rechendaten (Deponie 19-NL)

Abbildung 8-35 Vergleich Messdaten und Rechendaten (Deponie 20-NL)

Abbildung 8-36 Vergleich Messdaten und Rechendaten (Deponie 21-NL)

Abbildung 8-37 Vergleich Messdaten und Rechendaten (Deponie Zeeasterweg)

8.3 Güterzusammensetzung der Abfälle in Österreich und den USA

Abbildung 8-38 Abfallzusammensetzung USA 1999 (U. S. Environmental Protection Agengy, 2001)

Abbildung 8-39 Restmüllzusammensetzung Österreich 1996 (BAWP, 1998)